Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.

نویسندگان

  • Rory N Pruitt
  • Nicole M Chumbler
  • Stacey A Rutherford
  • Melissa A Farrow
  • David B Friedman
  • Ben Spiller
  • D Borden Lacy
چکیده

The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Determinants of the Clostridium Difficile Toxin a Glucosyltransferase Activity*

Background: C. difficile TcdA and TcdB glucosylate small GTPases. Results: Structural and functional studies reveal comparable activities with Rho substrates, enhanced activities following autoprocessing, and TcdA-specific modification of Rap2A. Conclusion: TcdA is a potent enzyme and modifies a broader array of GTPase substrates than TcdB. Significance: These findings highlight the importance ...

متن کامل

Application of mutated Clostridium difficile toxin A for determination of glucosyltransferase-dependent effects.

Mutation of tryptophan-101 in Clostridium difficile toxin A, a 308-kDa glucosyltransferase, resulted in a 50-fold-reduced cytopathic activity in cell culture experiments. The mutant toxin A was characterized and applied to distinguish between glucosyltransferase-dependent and -independent effects with respect to RhoB up-regulation as a cellular stress response.

متن کامل

Structural organization of the functional domains of Clostridium difficile toxins A and B.

Clostridium difficile toxins A and B are members of an important class of virulence factors known as large clostridial toxins (LCTs). Toxin action involves four major steps: receptor-mediated endocytosis, translocation of a catalytic glucosyltransferase domain across the membrane, release of the enzymatic moiety by autoproteolytic processing, and a glucosyltransferase-dependent inactivation of ...

متن کامل

A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile

The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferas...

متن کامل

Identification of an Essential Region for Translocation of Clostridium difficile Toxin B

Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 11  شماره 

صفحات  -

تاریخ انتشار 2012