Effects of progesterone on motility and prostaglandin levels in the distal guinea pig colon.
نویسندگان
چکیده
Progesterone (P4) inhibits the gastrointestinal muscle contraction by downregulating Galpha(q/11) proteins that mediate contraction, by upregulating Galpha(s) proteins that mediate relaxation, and by altering the pattern of cyclooxygenase (COX) enzymes and prostaglandins. We aimed to examine whether P4 treatment of guinea pigs in vivo affects basal colon motility [basal motility index (MI)] by altering the levels and actions of PGF(2alpha) and PGE(2). Guinea pigs were treated with intramuscular (IM) P4 for 4 days. The BASAL MI, the PGF(2alpha)-induced contraction, and PGE(2)-induced inhibition of contraction were examined in muscle strips and cells. The levels of PGF(2alpha) and PGE(2) were measured by radioimmunoassay. Treatment with P4 reduced the basal MI, the levels of PGF(2alpha), and PGF(2alpha)-induced contraction. P4 increased PGE(2) levels, and PGE(2) induced relaxation. Pretreatment with IM RU-486 (10 mg/kg per day), a P4 receptor antagonist, 1 h before P4 blocked the actions of P4. The PGF(2alpha) antagonist Al-1180 abolished basal MI and PGF(2alpha)-induced contraction. N-ethylmaleimide, which blocks unoccupied membrane receptors, blocked Ach and VIP actions but had no effect on PGF(2alpha) and PGE(2) effects. A COX-1 inhibitor decreased and a COX-2 inhibitor increased PGF(2alpha) levels; GTPgammaS increased and GDPbetaS decreased the levels of PGF(2alpha). Galpha(q/11) protein antibodies (Abs) reduced PGF(2alpha) levels, and Galpha(i3) Abs blocked its motor actions. Galphas Abs increased PGF(2alpha) but decreased PGE(2) levels. We concluded that P4 decreases basal MI by reducing PGF(2alpha) levels caused by downregulation of Galpha(q/11) and that PGF(2alpha)-induced contraction was blocked by downregulating Galpha(i3). P4 also decreased the basal MI by increasing PGE(2) levels, and PGE(2) induced relaxation by upregulating Galpha(s) proteins.
منابع مشابه
Gastrointestinal Motility Monitor (GIMM).
The Gastrointestinal Motility Monitor (GIMM; Catamount Research and Development; St. Albans, VT) is an in vitro system that monitors propulsive motility in isolated segments of guinea pig distal colon. The complete system consists of a computer, video camera, illuminated organ bath, peristaltic and heated water bath circulating pumps, and custom GIMM software to record and analyze data. Compare...
متن کاملThe Effect of Deoxycholic Acid on Secretion and Motility in the Rat and Guinea Pig Large Intestine
Background/Aims Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon. Methods The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions a...
متن کاملComparison of motor reactivity of the colonic muscularis mucosae isolated from human, guinea pig and rat in vitro.
We have compared the reactivity to spasmogens of longitudinal muscularis mucosae isolated from the human, guinea pig and rat colon in vitro. The muscularis mucosae isolated from the human distal colon responded with a sustained contractions to carbachol (10 nM-30 microM), in a concentration-dependent manner, and the maximum contraction was comparable to that with high potassium concentration (1...
متن کاملRegional Difference in Colonic Motility Response to Electrical Field Stimulation in Guinea Pig
BACKGROUND/AIMS In isolated guinea-pig colon, we investigated regional differences in peristalsis evoked by intrinsic electrical nerve stimulation. METHODS Four colonic segments from mid and distal colon of Hartley guinea pigs, were mounted horizontally in an organ bath. Measurement of pellet propulsion time, intraluminal pressure, electrical field stimulation (EFS; 0.5 ms, 60 V, 10 Hz), and ...
متن کاملAutonomic Nerve Regulation of Colonic Peristalsis in Guinea Pigs
BACKGROUND/AIMS Colonic peristalsis is mainly regulated via intrinsic neurons in guinea pigs. However, autonomic regulation of colonic motility is poorly understood. We explored a guinea pig model for the study of extrinsic nerve effects on the distal colon. METHODS Guinea pigs were sacrificed, their distal colons isolated, preserving pelvic nerves (PN) and inferior mesenteric ganglia (IMG), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 297 5 شماره
صفحات -
تاریخ انتشار 2009