Rational invariant tori , phase space tunneling , and spectra for non - selfadjoint operators in dimension 2
نویسندگان
چکیده
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation ≫ h (or sometimes ≫ h2) is not too large.
منابع مشابه
Diophantine tori and spectral asymptotics for non-selfadjoint operators
We study spectral asymptotics for small non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part possesses several invariant Lagrangian tori enjoying a Diophantine property. We get complete asymptotic expansions for all eigenvalues in certain rectangles in the complex plane in two different cases: in the...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملStructure and Breakdown of Invariant Tori in a 4-d Mapping Model of Accelerator Dynamics
We study sequences of periodic orbits and the associated phase space dynamics in a 4-D symplectic map of interest to the problem of beam stability in circular particle accelerators. The increasing period of these orbits is taken from a sequence of rational approximants to an incommensurate pair of irrational rotation numbers of an invariant torus. We find stable (elliptic– elliptic) periodic or...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کامل