A Cross Eigenvalue Condition Matrix

نویسندگان

  • Joel Friedman
  • Chen Greif
چکیده

We introduce a cross eigenvalue condition matrix for measuring the sensitivity of eigenvalue computations. A fundamental difference between this new object and traditional eigenvalue condition numbers is that cross interactions between eigenvectors that are not associated with the same eigenvalue are taken into account. We develop an abstract formulation that makes it possible to define continuous and finite quantities for all square matrices, including non-diagonalizable ones. We give applications of our condition matrix to Markov chains, including the PageRank model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on unique solvability of the absolute value equation

It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Computational aspect to the nearest southeast submatrix that makes multiple a prescribed eigenvalue

Given four complex matrices $A$‎, ‎$B$‎, ‎$C$ and $D$ where $Ainmathbb{C}^{ntimes n}$‎ ‎and $Dinmathbb{C}^{mtimes m}$ and let the matrix $left(begin{array}{cc}‎ A & B ‎ C & D‎ end{array} right)$ be a normal matrix and‎ assume that $lambda$ is a given complex number‎ ‎that is not eigenvalue of matrix $A$‎. ‎We present a method to calculate the distance norm (with respect to 2-norm) from $D$‎ to ...

متن کامل

APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK ‎PRICES

The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical ‎Structures.‎ In ‎this work‎, we analyze cross-crrelations between price fluctuations of 20 ‎company ‎stocks‎...

متن کامل

On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients

In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009