On the Spectral Norm of a Random Toeplitz Matrix

نویسنده

  • MARK W. MECKES
چکیده

Abstract Suppose that Tn is a Toeplitz matrix whose entries come from a sequence of independent but not necessarily identically distributed random variables with mean zero. Under some additional tail conditions, we show that the spectral norm of Tn is of the order √ n log n. The same result holds for random Hankel matrices as well as other variants of random Toeplitz matrices which have been studied in the literature

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Norm of Random Large Dimensional Noncentral Toeplitz and Hankel Matrices

Suppose sn is the spectral norm of either the Toeplitz or the Hankel matrix whose entries come from an i.i.d. sequence of random variables with positive mean μ and finite fourth moment. We show that n−1/2(sn − nμ) converges to the normal distribution in either case. This behaviour is in contrast to the known result for the Wigner matrices where sn−nμ is itself asymptotically normal.

متن کامل

Masked Toeplitz covariance estimation

The problem of estimating the covariance matrix Σ of a p-variate distribution based on its n observations arises in many data analysis contexts. While for n > p, the classical sample covariance matrix Σ̂n is a good estimator for Σ, it fails in the highdimensional setting when n ≪ p. In this scenario one requires prior knowledge about the structure of the covariance matrix in order to construct r...

متن کامل

Time-Domain Identi cation Using ARMARKOV/Toeplitz Models

Nomenclature Hadamard product k k2, k kF spectral norm, Frobenius norm 0l m; 0l l m zero matrix, 0l l Il; 1l m l l identity matrix, l m ones matrix

متن کامل

TOEPLITZ MATRICES WITH FISHER - HARTWIG SYMBOLS 3 norm of a

We describe the asymptotics of the spectral norm of finite Toeplitz matrices generated by functions with Fisher-Hartwig singularities as the matrix dimension goes to infinity. In the case of positive generating functions, our result provides the asymptotics of the largest eigenvalue, which is of interest in time series with long-range memory.

متن کامل

ar X iv : m at h / 03 07 33 0 v 2 [ m at h . PR ] 2 9 M ay 2 00 4 SPECTRAL MEASURE OF LARGE RANDOM HANKEL , MARKOV AND TOEPLITZ MATRICES

We study the limiting spectral measure of large symmetric random matrices of linear algebraic structure. For Hankel and Toeplitz matrices generated by i.i.d. random variables {Xk} of unit variance, and for symmetric Markov matrices generated by i.i.d. random variables {Xi,j}j>i of zero mean and unit variance, scaling the eigenvalues by √ n we prove the almost sure, weak convergence of the spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007