SICAGO: Semi-supervised cluster analysis using semantic distance between gene pairs in Gene Ontology

نویسندگان

  • Bo-Yeong Kang
  • Song Ko
  • Dae-Won Kim
چکیده

SUMMARY Despite the importance of using the semantic distance to improve the performance of conventional expression-based clustering, there are few freely available software that provides a clustering algorithm using the ontology-based semantic distances as prior knowledge. Here, we present the SICAGO (SemI-supervised Cluster Analysis using semantic distance between gene pairs in Gene Ontology) system that helps to discover the groups of genes more effectively using prior knowledge extracted from Gene Ontology. AVAILABILITY http://ai.cau.ac.kr/sicago.html CONTACT [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Feasibility of Heterogeneous Analysis of Large Scale Biological Data

Secondary information such as Gene Ontology (GO) annotations or location analysis of transcription factor binding is often relied upon to demonstrate validity of clusters, by considering whether individual terms or factors are significantly enriched in clusters. If such an enrichment indeed supports validity, it should be helpful in finding biologically meaningful clusters in the first place. O...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Medline Document Clustering with Semi-Supervised Spectral Clustering Algorithm

To clustering biomedical documents, three different types of information’s are used. They are local content (LC),global content(GC) and mesh semantic(MS).In previous method only one are two types of information are cluster using Constraints and distance based algorithm. But in proposed system we used Semi Supervised clustering algorithm. It made most of the noisy constraints to improve clusteri...

متن کامل

Semantic Relation Extraction Based on Semi-supervised Learning

Many tasks of information extraction or natural language processing have a property that the data naturally consist of several views—disjoint subsets of features. Specifically, a semantic relationship can be represented with some entity pairs or contexts surrounding the entity pairs. For example, the PersonBirthplace relation can be recognized from the entity pair view, such as (Albert Einstein...

متن کامل

Genetic structure of Fusarium oxysporum f. sp. ciceri populations from chickpea in Ilam province, Iran

Chickpea (Cicer arietinum L.) is one of the most important legume crops in Iran. Wilt disease caused by Fusarium oxysporum f. sp. ciceri, is the most important soil-borne disease of chickpea in the world. This disease caused high losses in different regions during recent years. Simple sequence repeat (SSR) were used to estimate genetic diversity in 114 of F. oxysporum isolates from six counties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 2010