Pseudorandomness for Read-Once, Constant-Depth Circuits

نویسندگان

  • Sitan Chen
  • Thomas Steinke
  • Salil P. Vadhan
چکیده

For Boolean functions computed by read-once, depth-D circuits with unbounded fan-in over the de Morgan basis, we present an explicit pseudorandom generator with seed length Õ(log n). The previous best seed length known for this model was Õ(log n), obtained by Trevisan and Xue (CCC ‘13 ) for all of AC (not just read-once). Our work makes use of Fourier analytic techniques for pseudorandomness introduced by Reingold, Steinke, and Vadhan (RANDOM ‘13 ) to show that the generator of Gopalan et al. (FOCS ‘12 ) fools read-once AC. To this end, we prove a new Fourier growth bound for read-once circuits, namely that for every F : {0, 1} → {0, 1} computed by a read-once, depth-D circuit, ∑ s⊆[n],|s|=k |F̂ [s]| ≤ O(logD−1 n), where F̂ denotes the Fourier transform of F over Z2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudorandom Generators for Read-Once ACC

We consider the problem of constructing pseudorandom generators for read-once circuits. We give an explicit construction of a pseudorandom generator for the class of read-once constant depth circuits with unbounded fan-in AND, OR, NOT and generalized modulo m gates, where m is an arbitrary fixed constant. The seed length of our generator is poly-logarithmic in the number of variables and the er...

متن کامل

Polynomial identity testing of read-once oblivious algebraic branching programs

We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms (PIT) for algebraic branching programs (ABPs) that are read-once and oblivious. This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka [RS05]), but prior to this work there was no known such black-box algorithm. The main result...

متن کامل

Pseudorandomness against Depth-2 Circuits and Analysis of Goldreich's Candidate One-Way Function

Pseudorandomness against Depth-2 Circuits and Analysis of Goldreich’s Candidate One-Way Function

متن کامل

Pseudorandomness for Regular Branching Programs via Fourier Analysis

We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log n), where n is the length of the branching program. The previous best seed length known for this model was n, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 201...

متن کامل

Towards blackbox identity testing of log-variate circuits

Derandomization of blackbox identity testing reduces to extremely special circuit models. After a line of work, it is known that focusing on circuits with constant-depth and constantly many variables is enough (Agrawal,Ghosh,Saxena, STOC’18) to get to general hitting-sets and circuit lower bounds. This inspires us to study circuits with few variables, eg. logarithm in the size s. We give the fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.04675  شماره 

صفحات  -

تاریخ انتشار 2015