A Quantitative Analysis of the Impact on Chromatin Accessibility by Histone Modifications and Binding of Transcription Factors in DNase I Hypersensitive Sites

نویسندگان

  • Peng Cui
  • Jing Li
  • Bo Sun
  • Menghuan Zhang
  • Baofeng Lian
  • Yixue Li
  • Lu Xie
چکیده

It is known that chromatin features such as histone modifications and the binding of transcription factors exert a significant impact on the "openness" of chromatin. In this study, we present a quantitative analysis of the genome-wide relationship between chromatin features and chromatin accessibility in DNase I hypersensitive sites. We found that these features show distinct preference to localize in open chromatin. In order to elucidate the exact impact, we derived quantitative models to directly predict the "openness" of chromatin using histone modification features and transcription factor binding features, respectively. We show that these two types of features are highly predictive for chromatin accessibility in a statistical viewpoint. Moreover, our results indicate that these features are highly redundant and only a small number of features are needed to achieve a very high predictive power. Our study provides new insights into the true biological phenomena and the combinatorial effects of chromatin features to differential DNase I hypersensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin profiling across the human tumour necrosis factor gene locus reveals a complex, cell type-specific landscape with novel regulatory elements

The TNF locus on chromosome 6p21 encodes a family of proteins with key roles in the immune response whose dysregulation leads to severe disease. Transcriptional regulation is important, with cell type and stimulus-specific enhancer complexes involving the proximal TNF promoter. We show how quantitative chromatin profiling across a 34 kb region spanning the TNF locus has allowed us to identify a...

متن کامل

Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica.

While previous studies have shown that histone modifications could influence plant growth and development by regulating gene transcription, knowledge about the relationships between these modifications and gene expression is still limited. This study used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), to investigate the genome-wide distribution of four histone ...

متن کامل

Sequence and chromatin determinants of cell-type-specific transcription factor binding.

Gene regulatory programs in distinct cell types are maintained in large part through the cell-type-specific binding of transcription factors (TFs). The determinants of TF binding include direct DNA sequence preferences, DNA sequence preferences of cofactors, and the local cell-dependent chromatin context. To explore the contribution of DNA sequence signal, histone modifications, and DNase acces...

متن کامل

Dynamic chromatin accessibility modeled by Markov process of randomly-moving molecules in the 3D genome

Chromatin three-dimensional (3D) structure plays critical roles in gene expression regulation by influencing locus interactions and accessibility of chromatin regions. Here we propose a Markov process model to derive a chromosomal equilibrium distribution of randomly-moving molecules as a functional consequence of spatially organized genome 3D structures. The model calculates steady-state distr...

متن کامل

DNaseR: DNase I footprinting analysis of DNase-seq data

The combination of DNase I digestion and high-throughput sequencing (DNaseseq) has been used recently to map chromatin accessibility in a given tissue or cell type on a genome-wide scale (Song and Crawford, 2010). In addition to DNase I hypersensitive sites (DHSs), short regions of protected nucleotides known as footprints can be detected using a technique known as ”digital genomic footprinting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013