CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior.

نویسندگان

  • Sol Yun
  • Sung-Oong Kang
  • Sungjin Park
  • Ho Seok Park
چکیده

Herein, we demonstrate CO2-activated macroscopic graphene architectures with trimodal pore systems that consist of 3D inter-networked macroporosity arising from self-assembly, mesoporosity arising from the intervoids of nanosheets, and microporosity via CO2 activation. The existence of micropores residing in hierarchical structures of trimodal porous graphene frameworks (tGFs) contributes to greatly improve the surface area and pore volume, which are ∼3.8 times greater than typical values of existing 3D macroporous graphene monoliths. As confirmed by the specific capacity, the kinetic parameters, and the regeneration capability for chemical adsorption as well as the specific capacitance, the rate capability, and the cycle stability for electrochemical energy storage, the tGFs have an ideal texture for high performance capacitive materials. Furthermore, the tGFs obtain the structurally and energetically homogeneous surface active sites, which dominantly operate through the π-π interactions for adsorption. Consequently, the ultrahigh capacitance and ultrafast capacitive performance of the tGFs for both chemical and electrochemical adsorptions are attributed to hierarchical trimodal porosity and surface chemistry. These results offer a chemical approach combining self-assembly with conventional activation for the construction of 3D hierarchical structures with multimodal porosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Synthesized Reduced Graphene Oxide Enhanced the Capacitive Behavior of Activated Carbon/PVA as Potential Electrode Materials

In this work, activated carbon (AC) derived from biomass wastes was implemented as electrode materials in supercapacitor application. This study has adopted rubber seed shell (RSS) wastes to derive AC via pyrolysis process. Meanwhile, reduced graphene oxide (rGO) was used as an additive material in order to study the effect of the rGO in capacitive behavior. The synthesized rGO was successfully...

متن کامل

Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance

As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem. To date, CDI electrodes are mainly made up of porous carbon materials. However, the electrosorption performance obtained by now still cannot meet the demand of practical application. Therefore, a...

متن کامل

Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties.

We report the design and synthesis of two porous graphene frameworks (PGFs) prepared via covalent functionalization of reduced graphene oxide (RGO) with iodobenzene followed by a C-C coupling reaction. In contrast to RGO, these 3D frameworks show high surface area (BET, 825 m(2) g(-1)) and pore volumes due to the effect of pillaring. Interestingly, both the frameworks show high CO2 uptake (112 ...

متن کامل

Holey graphene frameworks for highly selective post-combustion carbon capture

Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively r...

متن کامل

Effect of supercritical CO(2) on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property.

In this paper, supercritical carbon dioxide (SC CO2) was first reported to help prepare unique flexible free-standing graphene oxide/nanofiber (GC) films. A novel hierarchical superior electrode material with polypyrrole (PPy) deposited on GO/CNF-SC (GC-SC) films was prepared via an in situ polymerization process. Our experimental results indicate that SC CO2 can not only enlarge the space betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014