Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking
نویسندگان
چکیده
Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m · s(-1). Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.
منابع مشابه
Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.
Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In ...
متن کاملThe effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
The lack of functional ankle musculature in lower limb amputees contributes to the reduced prosthetic ankle push-off, compensations at other joints and more energetically costly gait commonly observed in comparison to non-amputees. A variety of energy storing and return prosthetic feet have been developed to address these issues but have not been shown to sufficiently improve amputee biomechani...
متن کاملMechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental featur...
متن کاملPassive Ankle-Foot Prosthesis Prototype with Extended Push-Off
Current commercially available prosthetic feet have succeeded in decreasing the metabolic cost and increasing the speed of walking compared to walking with conventional, mostly solid prosthetic feet. However, there is still a large discrepancy when compared with a non‐disabled gait, and the walking pattern remains strongly disturbed. During the stance phase of the leg, t...
متن کاملEffect of push-off timing on metabolic cost during walking with a universal ankle-foot prosthesis emulator
1 Introduction The ankle delivers about half of the total mechanical work during walking. Lower-limb amputees using conventional passive-elastic prostheses experience 20 to 30% higher metabolic cost than able-bodied individuals, perhaps because these prostheses do not provide net positive work during the course of a step [1]. To address this problem, companies are developing battery-powered pro...
متن کامل