Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches

نویسندگان

  • Andrzej Cichocki
  • Rafal Zdunek
چکیده

The most popular algorithms for Nonnegative Matrix Factorization (NMF) belong to a class of multiplicative Lee-Seung algorithms which have usually relative low complexity but are characterized by slow-convergence and the risk of getting stuck to in local minima. In this paper, we present and compare the performance of additive algorithms based on three different variations of a projected gradient approach. Additionally, we discuss a novel multilayer approach to NMF algorithms combined with multi-start initializations procedure, which in general, considerably improves the performance of all the NMF algorithms. We demonstrate that this approach (the multilayer system with projected gradient algorithms) can usually give much better performance than standard multiplicative algorithms, especially, if data are ill-conditioned, badly-scaled, and/or a number of observations is only slightly greater than a number of nonnegative hidden components. Our new implementations of NMF are demonstrated with the simulations performed for Blind Source Separation (BSS) data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems

Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and test some recent PG...

متن کامل

Character Recognition Analysis with Nonnegative Matrix Factorization

In this paper, we analyze character recognition performance of three different nonnegative matrix factorization (NMF) algorithms. These are multiplicative update (MU) rule known as standard NMF, alternating least square (NMF-ALS) and projected gradient descent (NMF-PGD). They are most preferred approaches in the literature. There are lots of application areas for NMF such as robotics, bioinform...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Projected Gradient Methods for Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) can be formulated as a minimization problem with bound constraints. Although bound-constrained optimization has been studied extensively in both theory and practice, so far no study has formally applied its techniques to NMF. In this letter, we propose two projected gradient methods for NMF, both of which exhibit strong optimization properties. We discuss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2007