Structures of the hydrolase domain of zebrafish 10-formyltetrahydrofolate dehydrogenase and its complexes reveal a complete set of key residues for hydrolysis and product inhibition
نویسندگان
چکیده
10-Formyltetrahydrofolate dehydrogenase (FDH), which is composed of a small N-terminal domain (Nt-FDH) and a large C-terminal domain, is an abundant folate enzyme in the liver and converts 10-formyltetrahydrofolate (10-FTHF) to tetrahydrofolate (THF) and CO2. Nt-FDH alone possesses a hydrolase activity, which converts 10-FTHF to THF and formate in the presence of β-mercaptoethanol. To elucidate the catalytic mechanism of Nt-FDH, crystal structures of apo-form zNt-FDH from zebrafish and its complexes with the substrate analogue 10-formyl-5,8-dideazafolate (10-FDDF) and with the products THF and formate have been determined. The structures reveal that the conformations of three loops (residues 86-90, 135-143 and 200-203) are altered upon ligand (10-FDDF or THF) binding in the active site. The orientations and geometries of key residues, including Phe89, His106, Arg114, Asp142 and Tyr200, are adjusted for substrate binding and product release during catalysis. Among them, Tyr200 is especially crucial for product release. An additional potential THF binding site is identified in the cavity between two zNt-FDH molecules, which might contribute to the properties of product inhibition and THF storage reported for FDH. Together with mutagenesis studies and activity assays, the structures of zNt-FDH and its complexes provide a coherent picture of the active site and a potential THF binding site of zNt-FDH along with the substrate and product specificity, lending new insights into the molecular mechanism underlying the enzymatic properties of Nt-FDH.
منابع مشابه
Structures of the hydrolase domain of human 10-formyltetrahydrofolate dehydrogenase and its complex with a substrate analogue.
10-Formyltetrahydrofolate dehydrogenase is a ubiquitously expressed enzyme in the human body. It catalyses the formation of tetrahydrofolate and carbon dioxide from 10-formyltetrahydrofolate, thereby playing an important role in the human metabolism of one-carbon units. It is a two-domain protein in which the N-terminal domain hydrolyses 10-formyltetrahydrofolate into formate and tetrahydrofola...
متن کاملDomain structure of rat 10-formyltetrahydrofolate dehydrogenase. Resolution of the amino-terminal domain as 10-formyltetrahydrofolate hydrolase.
We expressed the NH2-terminal domain of the multidomain, multifunctional enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), using a baculovirus expression system in insect cells. Expression of the 203-amino acid NH2-terminal domain (residues 1-203), which is 24-30% identical to a group of glycinamide ribonucleotide transformylases (EC 2.1.2.2), resulted in the appearance of insoluble recomb...
متن کاملDisruption of a calmodulin central helix-like region of 10-formyltetrahydrofolate dehydrogenase impairs its dehydrogenase activity by uncoupling the functional domains.
10-Formyltetrahydrofolate dehydrogenase (FDH) is composed of three domains and possesses three catalytic activities but has only two catalytic centers. The amino-terminal domain (residue 1-310) bears 10-formyltetrahydrofolate hydrolase activity, the carboxyl-terminal domain (residue 420-902) bears an aldehyde dehydrogenase activity, and the full-length FDH produces 10-formyltetrahydrofolate deh...
متن کاملExpression, purification, and properties of the aldehyde dehydrogenase homologous carboxyl-terminal domain of rat 10-formyltetrahydrofolate dehydrogenase.
The liver cytosolic enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH) (EC 1.5.1.6) catalyzes two reactions: the NADP+-dependent oxidation of 10-formyltetrahydrofolate to tetrahydrofolate and CO2 and the NADP+-independent hydrolysis of 10-formyltetrahydrofolate to tetrahydrofolate and formate. The COOH-terminal domain of the enzyme (residues 420-902) is about 48% identical to a family of NAD...
متن کاملREASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA
Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...
متن کامل