Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training

نویسندگان

  • Zhuang Wang
  • Koby Crammer
  • Slobodan Vucetic
چکیده

Online algorithms that process one example at a time are advantageous when dealing with very large data or with data streams. Stochastic Gradient Descent (SGD) is such an algorithm and it is an attractive choice for online Support Vector Machine (SVM) training due to its simplicity and effectiveness. When equipped with kernel functions, similarly to other SVM learning algorithms, SGD is susceptible to the curse of kernelization that causes unbounded linear growth in model size and update time with data size. This may render SGD inapplicable to large data sets. We address this issue by presenting a class of Budgeted SGD (BSGD) algorithms for large-scale kernel SVM training which have constant space and constant time complexity per update. Specifically, BSGD keeps the number of support vectors bounded during training through several budget maintenance strategies. We treat the budget maintenance as a source of the gradient error, and show that the gap between the BSGD and the optimal SVM solutions depends on the model degradation due to budget maintenance. To minimize the gap, we study greedy budget maintenance methods based on removal, projection, and merging of support vectors. We propose budgeted versions of several popular online SVM algorithms that belong to the SGD family. We further derive BSGD algorithms for multi-class SVM training. Comprehensive empirical results show that BSGD achieves higher accuracy than the state-of-the-art budgeted online algorithms and comparable to non-budget algorithms, while achieving impressive computational efficiency both in time and space during training and prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BudgetedSVM: a toolbox for scalable SVM approximations

We present BudgetedSVM, an open-source C++ toolbox comprising highly-optimized implementations of recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines, Low-rank Linearization SVM, and Budgeted Stochastic Gradient Descent. BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, s...

متن کامل

Scalable Support Vector Clustering Using Budget

Owing to its application in solving the difficult and diverse clustering or outlier detection problem, support-based clustering has recently drawn plenty of attention. Support-based clustering method always undergoes two phases: finding the domain of novelty and performing clustering assignment. To find the domain of novelty, the training time given by the current solvers is typically over-quad...

متن کامل

Rosen's projection method for SVM training

In this work we will give explicit formulae for the application of Rosen’s gradient projection method to SVM training that leads to a very simple implementation. We shall experimentally show that the method provides good descent directions that result in less training iterations, particularly when large precision is wanted. However, a naive kernelization may end up in a procedure requiring more...

متن کامل

Large-scale Online Kernel Learning with Random Feature Reparameterization

A typical online kernel learning method faces two fundamental issues: the complexity in dealing with a huge number of observed data points (a.k.a the curse of kernelization) and the difficulty in learning kernel parameters, which often assumed to be fixed. Random Fourier feature is a recent and effective approach to address the former by approximating the shift-invariant kernel function via Boc...

متن کامل

: Primal Estimated sub - GrAdient SOlver for SVM

We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy is Õ(1/ ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012