Morphology and property control of NiO nanostructures for supercapacitor applications

نویسندگان

  • Farrukh Iqbal Dar
  • Kevin Radakishna Moonooswamy
  • Mohammed Es-Souni
چکیده

We process one-dimensional (1D) NiO nanostructures in anodized alumina templates starting from electrochemically deposited Ni nanotubes (NTs), and characterize their morphology-dependent supercapacitance behavior. The morphology of the 1D NiO nanostructures is controlled by the time of annealing at 450°C. After 25 min of annealing, the NTs start to close but maintain the tubular structure, and after a further 300 min of annealing time, the tubes are completely closed and nanorods (NRs) are formed. We show that the structures obtained are highly promising for supercapacitor applications; the performance of the NiO NT structure is with a specific capacitance of 2,093 F/g, the highest ever obtained for NiO, approaching the theoretical capacitance of this material. A suitable combination of nanocrystalline grain size and the high surface area akin to the tubular structure is responsible for this high performance. In contrast, the NiO NR structure is characterized by lower performance (797 F/g). A further attribute of the proposed structure is its high stability against galvanostatic charging-discharging cycling at high current densities, with almost no alteration to performance after 500 cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode

We propose a 'weaving' evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based 'microflowers' which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO 'microflower' is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1...

متن کامل

Anionic and Cationic Surfactants in Ammonia Gas-Mediated Synthesis of β-Ni(OH)2 and NiO Nanostructures

Up to now, researchers have proposed several synthesis methods for the preparation of β-nickel(II) hydroxide nanostructures. Most of these approaches contain harsh synthetic conditions such as multi-step processes, high temperatures and long reaction time. In this work, a novel, facile and low cost method is introduced to produce of β-Ni(OH)2 nanostructures using the gas-solution precipitation ...

متن کامل

Synthesis of Cu Doped NiO Nanoparticles by Chemical Method

The Cu doped NiO (NiO:Cu) nanoparticles were synthesized by co-precipitation method using NiCl2.6H2O, CuCl2.2H2O for Ni and Cu sources, respectively. Sodium hydroxide has been used as a precipitator agent. Effect of Cu doping agent on the structural and optical properties of nanostructures were characterized by XRD, SEM, AFM, spectrophotometry, FTIR a...

متن کامل

Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage

In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...

متن کامل

Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation

In this study, the influence of the morphology on the electrocatalytic activity of nickel oxide nanostructures toward methanol oxidation is investigated. Two nanostructures were utilized: nanoparticles and nanofibers. NiO nanofibers have been synthesized by using the electrospinning technique. Briefly, electrospun nanofiber mats composed of polyvinylpyrolidine and nickel acetate were calcined a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013