Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays
نویسنده
چکیده
The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used successfully in this case. This paper shows a highly testable architecture of a DNA Bio-Sensing array, its basic sensing concept, fluidic modeling and sensitivity analysis. The overall VHDL-AMS fault simulation of the system is shown.
منابع مشابه
Behavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS
During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...
متن کاملDesign & Test of an Oscillation Based System Architecture for DNA Sensor Arrays
A DfT strategy for MEMS-based DNA sensors is investigated in this paper. Based on a fault-free and defect model developed for a single sensing element and the VHDL-AMS simulation results, it is implied that an oscillation-based interface might be a potential solution for both testing and read out of this DNA sensor array system. A possible physical implementation of the biosensing array is prop...
متن کاملMixed-Signal Hardware Description Languages in the Era of System-on-Silicon: Challenges and Opportunities (Abstract of Embedded Tutorial)
SPICE-based simulation is recognized as a vital tool in shortening time-to-market, reducing product cost, and improving system reliability. It continues to have a profound impact on today’s electronic industry. Behavioral modeling and simulation with Analog and Mixed-Signal Hardware Description Languages (AHDLs) are becoming critical to address the challenge of designing today’s increasingly co...
متن کاملModel Library and Tool Support for MEMS Simulation
FEM simulation is often a very time-consuming process in the design optimization of complex MEMS. System-level models with reduced order and accuracy have to be generated as a basis of a multi-domain system simulation. A powerful modelling methodology is needed to develop a library of MEMS models for different physical domains (mechanical, magnetic, fluidic, ...). The components are modelled as...
متن کاملDesign and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کامل