Dense graphs with small clique number
نویسندگان
چکیده
We consider the structure of Kr-free graphs with large minimum degree, and show that such graphs with minimum degree δ > (2r − 5)n/(2r − 3) are homomorphic to the join Kr−3 ∨ H where H is a triangle-free graph. In particular this allows us to generalize results from triangle-free graphs and show that Kr-free graphs with such minimum degree have chromatic number at most r+ 1. We also consider the minimum-degree thresholds for related properties.
منابع مشابه
Constructing dense graphs with sublinear Hadwiger number
Mader asked to explicitly construct dense graphs for which the size of the largest clique minor is sublinear in the number of vertices. Such graphs exist as a random graph almost surely has this property. This question and variants were popularized by Thomason over several articles. We answer these questions by showing how to explicitly construct such graphs using blow-ups of small graphs with ...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملParameterized Complexity of Neighborhood Problems in Graphs with no Small Cycles
We show that several problems that are hard for various parameterized complexity classes on general graphs, become fixed parameter tractable on graphs with no small cycles. More specifically, we give fixed parameter algorithms for Dominating Set, t-Vertex Cover (where we need to cover at least t edges) and several of their variants on graphs that have no triangles or cycles of length 4. These p...
متن کاملImproving the Maximum-Weight Clique Algorithm for the Dense Graphs
In this paper we present a fast algorithm for the maximum-weight clique problem on arbitrary undirected graphs, which is improved for the dense graphs. The algorithm uses colour classes and backtracking techniques inside itself in parallel in a form of a branch and bound algorithm. The algorithm contains also several improvements for the most complex case, which are dense graphs. Computational ...
متن کاملClique coloring of dense random graphs
The clique chromatic number of a graph G = (V,E) is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph G = G(n, 1/2) is, with high probability, Ω(log n). This settles a problem of McDiarmid, Mitsche and Pra lat who proved that it is O(log n) with high p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 66 شماره
صفحات -
تاریخ انتشار 2011