Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection.

نویسندگان

  • Kenneth L Muldrew
  • Laura P James
  • Leslie Coop
  • Sandra S McCullough
  • Howard P Hendrickson
  • Jack A Hinson
  • Philip R Mayeux
چکیده

Acetaminophen-induced hepatotoxicity has been attributed to covalent binding of the reactive metabolite N-acetyl-p-benzoquinone imine to cysteine groups on proteins as an acetaminophen-cysteine conjugate. We report a high-performance liquid chromatography with electrochemical detection (HPLC-ECD) assay for the conjugate with increased sensitivity compared with previous methods. Previous methods to quantitate the protein-bound conjugate have used a competitive immunoassay or radiolabeled acetaminophen. With HPLC-ECD, the protein samples are dialyzed and then digested with protease. The acetaminophen-cysteine conjugate is then quantified by HPLC-ECD using tyrosine as an internal reference. The lower limit of detection of the assay is approximately 3 pmol/mg of protein. Acetaminophen protein adducts were detected in liver and serum as early as 15 min after hepatotoxic dosing of acetaminophen to mice. Adducts were also detected in the serum of acetaminophen overdose patients. Analysis of human serum samples for the acetaminophen-cysteine conjugate revealed a positive correlation between acetaminophen-cysteine conjugate concentration and serum aspartate aminotransferase (AST) activity or time. Adducts were detected in the serum of patients even with relatively mild liver injury, as measured by AST and alanine aminotransferase. This assay may be useful in the diagnostic evaluation of patients with hepatotoxicity of an indeterminate etiology for which acetaminophen toxicity is suspect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single administrations of high and low doses of acetaminophen causes different effects on COX-2 gene expression and on tissue damage in liver and kidneys

Introduction: High dose of acetaminophen (APAP) is known to have hepatotoxic and nephrotoxic effects and studies show that this toxicities are dependent on the function of phase I bioactivation enzymes- Cyp450- and phase II biotransformation enzymes especially glucuronosylation and sulfonation pathways. However, the role of cyclooxygenase (COX) as an inflammatory mediator in toxic effects of AP...

متن کامل

Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure.

Acetaminophen (APAP)-induced liver toxicity occurs with formation of APAP-protein adducts. These adducts are formed by hepatic metabolism of APAP to N-acetyl-p-benzoquinone imine, which covalently binds to hepatic proteins as 3-(cystein-S-yl)-APAP adducts. Adducts are released into blood during hepatocyte lysis. We previously showed that adducts could be quantified by high-performance liquid ch...

متن کامل

Interference-free Determination of Carbamazepine in Human Serum Using High Performance Liquid Chromatography: A Comprehensive Research with Three-way Calibration Methods

In the present study, a comprehensive and systematic strategy was described to evaluate the performance of several three-way calibration methods on a bio-analytical problem. Parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), self-weighted alternating trilinear decomposition (SWATLD), alternating penalty trilinear decomposition (APTLD) and unfolded partial least squa...

متن کامل

Interference-free Determination of Carbamazepine in Human Serum Using High Performance Liquid Chromatography: A Comprehensive Research with Three-way Calibration Methods

In the present study, a comprehensive and systematic strategy was described to evaluate the performance of several three-way calibration methods on a bio-analytical problem. Parallel factor analysis (PARAFAC), alternating trilinear decomposition (ATLD), self-weighted alternating trilinear decomposition (SWATLD), alternating penalty trilinear decomposition (APTLD) and unfolded partial least squa...

متن کامل

A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3'-hydroxyacetanilide.

Acetaminophen (4'-hydroxyacetanilide), a widely used analgesic/antipyretic drug, is hepatotoxic in large doses, whereas the m-hydroxy isomer of acetaminophen, 3'-hydroxyacetanilide, is not hepatotoxic. Both are oxidized by mouse liver cytochromes P-450 to reactive metabolites that bind covalently to hepatic proteins. Because previous studies have shown that peak levels of liver protein adducts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 2002