Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae)

نویسندگان

  • Quanwen Dou
  • Ruijuan Liu
  • Feng Yu
چکیده

Molecular karyotypes of Hordeum bogdanii Wilensky, 1918 (2n = 14), and Hordeum brevisubulatum Link, 1844 ssp. brevisubulatum (2n = 28), were characterized by physical mapping of several repetitive sequences. A total of 18 repeats, including all possible di- or trinucleotide SSR (simple sequence repeat) motifs and satellite DNAs, such as pAs1, 5S rDNA, 45S rDNA, and pSc119.2, were used as probes for fluorescence in situ hybridization on root-tip metaphase chromosomes. Except for the SSR motifs AG, AT and GC, all the repeats we examined produced detectable hybridization signals on chromosomes of both species. A detailed molecular karyotype of the I genome of Hordeum bogdanii is described for the first time, and each repetitive sequence is physically mapped. A high degree of chromosome variation, including aneuploidy and structural changes, was observed in Hordeum brevisubulatum. Although the distribution of repeats in the chromosomes of Hordeum brevisubulatum is different from that of Hordeum bogdanii, similar patterns between the two species imply that the autopolyploid origin of Hordeum brevisubulatum is from a Hordeum species with an I genome. A comparison of the I genome and the other Hordeum genomes, H, Xa and Xu, shows that colocalization of motifs AAC, ACT and CAT and colocalization of motifs AAG and AGG are characteristic of the I genome. In addition, we discuss the evolutionary significance of repeats in the genome during genome differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clavicipitaceous Anamorphic Endophytes in Hordeum germplasm

The incidence of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, in eighteen Hordeum species from the U.S. National Plant Germplasm System was examined using light and Scanning Electron Microscopy (SEM). Seventeen plant inventory accessions from only three Hordeum species, including H. bogdanii, H. brevis...

متن کامل

Resistance of Diploid Triticeae Species and Accessions to the Columbia Root-knot Nematode, Meloidogyne chitwoodi.

The Columbia root-knot nematode, Meloidogyne chitwoodi race 2, is associated with several plant species, including members of the tribe Triticeae. We evaluated 15 diploid species for M. chitwoodi gall and reproductive indices from the following genera: Agropyron, Pseudoroegneria, Hordeum, Psathyrostachys, and Thinopyrum. Species from the genus Thinopyrum (Thinopyrum bessarabicum; J genome) and ...

متن کامل

Fungal endophytes of wild barley and their effects on Diuraphis noxia population development

Laboratory experiments were conducted to compare the expression of Diuruphis noxia (Mordvilko) (Homoptera: Aphididae) resistance in four plant introduction (PI) lines of wild barley (Hordeum) infected with different species or strains of endophytic fungi (tribe Balansieae, family Clavicipitaceae, Neotyphodium gen. nov. [formerly Acremonium]). Aphid densities were significantly lower on endophyt...

متن کامل

Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region

Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-co...

متن کامل

Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes

A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016