Flexible G1 interpolation of quad meshes
نویسندگان
چکیده
Transforming an arbitrary mesh into a smooth G surface has been the subject of intensive research works. To get a visual pleasing shape without any imperfection even in the presence of extraordinary mesh vertices is still a challenging problem in particular when interpolation of the mesh vertices is required. We present a new local method, which produces visually smooth shapes while solving the interpolation problem. It consists of combining low degree biquartic Bézier patches with minimum number of pieces per mesh face, assembled together with G-continuity. All surface control points are given explicitly. The construction is local and free of zero-twists. We further show that within this economical class of surfaces it is however possible to derive a sufficient number of meaningful degrees of freedom so that standard optimization techniques result in high quality surfaces.
منابع مشابه
Bicubic G1 interpolation of arbitrary quad meshes using a 4-split
We present a piecewise bi-cubic parametric G1 spline surface interpolating the vertices of a quadrangular surface mesh of arbitrary topological type. While tensor product surfaces need a chess boarder parameterization they are not well suited to model surfaces of arbitrary topology without introducing singularities. Our spline surface consists of tensor product patches, but they can be assemble...
متن کاملRemarks on Flexible Quad Meshes
A quad mesh is a discrete surface consisting of planar quadrangles. There are some examples where this polyhedral structure consisting of rigid faces, but variable dihedral angles, is continuously flexible, e.g., Miura-ori, Voss surfaces or Kokotsakis’ example which starts from a regular tiling of the plane by congruent convex quadrangles. The classification of all flexible quadrangular meshes ...
متن کاملAn Approximating-Interpolatory Subdivision scheme
In the last decade, study and construction of quad/triangle subdivision schemes have attracted attention. The quad/triangle subdivision starts with a control mesh consisting of both quads and triangles and produces finer and finer meshes with quads and triangles (Fig. 1). Designers often want to model certain regions with quad meshes and others with triangle meshes to get better visual quality ...
متن کاملModeling Polyhedral Meshes with Affine Maps
We offer a framework for editing and modeling of planar meshes, focusing on planar quad, and hexagonaldominant meshes, which are held in high demand in the field of architectural design. Our framework manipulates these meshes by affine maps that are assigned per-face, and which naturally ensure the planarity of these faces throughout the process, resulting in a linear subspace of compatible pla...
متن کاملOn G1 stitched bi-cubic Bézier patches with arbitrary topology
Lower bounds, mandating a minimal number and degree of polynomial pieces, represent a major achievement in the theory of geometrically smooth (G) constructions. On one hand, they establish a floor when searching for optimal constructions, on the other they can be used to flag complex constructions for potential flaws. In particular, quadrilateral meshes of arbitrary topology can not in general ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphical Models
دوره 76 شماره
صفحات -
تاریخ انتشار 2014