A human, ATP-independent, RISC assembly machine fueled by pre-miRNA.
نویسندگان
چکیده
RNA interference (RNAi) is mediated by RNA-induced silencing complexes (RISCs), which are guided by microRNAs (miRNAs) or short interfering RNAs (siRNAs) to cognate RNA targets. In humans, the catalytic engine of RISC is a ribonucleoprotein formed by the Argonaute2 (Ago2) protein and either miRNA (miRNP) or siRNA (siRNP). The Dicer nuclease produces mature miRNAs and siRNAs from pre-miRNAs and double-stranded RNA (dsRNA), respectively, and associates with Ago2. Here, we studied the assembly of human RISC by presenting pre-miRNA to immunopurified complexes that contain Ago2, Dicer, and TRBP. Mature miRNAs were produced in an ATP-independent manner and guided specific cleavage of cognate RNA targets in a pattern that is typical of RISC. This de novo formed RISC activity dissociated from Dicer. The asymmetry of the RISC loading process was fully recapitulated in this system, which, however, could not efficiently assemble RISC from siRNA duplexes. Our findings demonstrate that, in humans, a miRNA loading complex (miRLC) is formed by Ago2 and Dicer prior to their encounter with pre-miRNA. We suggest that the miRLC couples the processing of the pre-miRNA substrate to the unwinding of the product and that after loading of the mature miRNA to Ago2, the miRLC disassembles and the miRNP is released.
منابع مشابه
Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing
RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demon...
متن کاملSlicer-independent mechanism drives small-RNA strand separation during human RISC assembly
Small RNA silencing is mediated by the effector RNA-induced silencing complex (RISC) that consists of an Argonaute protein (AGOs 1-4 in humans). A fundamental step during RISC assembly involves the separation of two strands of a small RNA duplex, whereby only the guide strand is retained to form the mature RISC, a process not well understood. Despite the widely accepted view that 'slicer-depend...
متن کاملDual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression
MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here,...
متن کاملMultilayer checkpoints for microRNA authenticity during RISC assembly.
MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of th...
متن کاملStatistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification
MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 19 24 شماره
صفحات -
تاریخ انتشار 2005