Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.
نویسندگان
چکیده
Bar-headed geese migrate over the Himalayas at up to 9000 m elevation, but it is unclear how they sustain the high metabolic rates needed for flight in the severe hypoxia at these altitudes. To better understand the basis for this physiological feat, we compared the flight muscle phenotype of bar-headed geese with that of low altitude birds (barnacle geese, pink-footed geese, greylag geese and mallard ducks). Bar-headed goose muscle had a higher proportion of oxidative fibres. This increased muscle aerobic capacity, because the mitochondrial volume densities of each fibre type were similar between species. However, bar-headed geese had more capillaries per muscle fibre than expected from this increase in aerobic capacity, as well as higher capillary densities and more homogeneous capillary spacing. Their mitochondria were also redistributed towards the subsarcolemma (cell membrane) and adjacent to capillaries. These alterations should improve O(2) diffusion capacity from the blood and reduce intracellular O(2) diffusion distances, respectively. The unique differences in bar-headed geese were much greater than the minor variation between low altitude species and existed without prior exercise or hypoxia exposure, and the correlation of these traits to flight altitude was independent of phylogeny. In contrast, isolated mitochondria had similar respiratory capacities, O(2) kinetics and phosphorylation efficiencies across species. Bar-headed geese have therefore evolved for exercise in hypoxia by enhancing the O(2) supply to flight muscle.
منابع مشابه
High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions betwee...
متن کاملControl of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.
Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP s...
متن کاملPhylogenetic and structural analysis of the HbA (a/b) and HbD (a/b) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: Bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera)
Two species of waterfowl living at high altitude provide a prominent example of parallel adaptation at the molecular level. The bar-headed goose (Anser indicus) breeds at high elevations in central Asia and migrates across the Himalayas, where the partial pressure of oxygen (O2) is one-third of sea level. In South America, the distantly related Andean goose (Chloephaga melanoptera) is endemic t...
متن کاملThe paradox of extreme high-altitude migration in bar-headed geese Anser indicus.
Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, dire...
متن کاملControl of breathing and adaptation to high altitude in the bar-headed goose.
The bar-headed goose flies over the Himalayan mountains on its migratory route between South and Central Asia, reaching altitudes of up to 9,000 m. We compared control of breathing in this species with that of low-altitude waterfowl by exposing birds to step decreases in inspired O(2) under both poikilocapnic and isocapnic conditions. Bar-headed geese breathed substantially more than both greyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 276 1673 شماره
صفحات -
تاریخ انتشار 2009