Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas.
نویسندگان
چکیده
The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.
منابع مشابه
Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the ...
متن کاملHorizontal Lloyd mirror patterns from straight and curved nonlinear internal waves.
Experimental observations and theoretical studies show that nonlinear internal waves occur widely in shallow water and cause acoustic propagation effects including ducting and mode coupling. Horizontal ducting results when acoustic modes travel between internal wave fronts that form waveguide boundaries. For small grazing angles between a mode trajectory and a front, an interference pattern may...
متن کاملAcoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
Horizontal ducting of sound between short-wavelength nonlinear internal gravity waves in coastal environments has been reported in many theoretical and experimental studies. Important consequences arising at the open end of an internal wave duct (the termination) are examined in this paper with three-dimensional normal mode theory and parabolic approximation modeling. For an acoustic source loc...
متن کامل3-D Sound Propagation and Acoustic Inversions in Shallow Water Oceans
Underwater sound propagation in the continental shelf is complicated due to many threedimensional (3-D) oceanographic and marine geologic features, such as shelfbreak fronts, nonlinear internal gravity waves and topographic variability. The long-term goals of this project are targeted on understanding the 3-D sound propagation effects caused by these environmental factors, and also on applying ...
متن کاملEnergy Transport by Nonlinear Internal Waves
Wintertime stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide on which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores and gravity currents. Wave-like pulses are highly turbulent (instantaneous bed st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 133 1 شماره
صفحات -
تاریخ انتشار 2013