Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury
نویسندگان
چکیده
Infants born prematurely are at high risk to develop white matter injury (WMI), due to exposure to hypoxic and/or inflammatory insults. Such perinatal insults negatively impact the maturation of oligodendrocytes (OLs), thereby causing deficits in myelination. To elucidate the precise pathophysiology underlying perinatal WMI, it is essential to fully understand the cellular mechanisms contributing to healthy/normal white matter development. OLs are responsible for myelination of axons. During brain development, OLs are generally derived from neuroepithelial zones, where neural stem cells committed to the OL lineage differentiate into OL precursor cells (OPCs). OPCs, in turn, develop into premyelinating OLs and finally mature into myelinating OLs. Recent studies revealed that OPCs develop in multiple waves and form potentially heterogeneous populations. Furthermore, it has been shown that myelination is a dynamic and plastic process with an excess of OPCs being generated and then abolished if not integrated into neural circuits. Myelination patterns between rodents and humans show high spatial and temporal similarity. Therefore, experimental studies on OL biology may provide novel insights into the pathophysiology of WMI in the preterm infant and offers new perspectives on potential treatments for these patients.
منابع مشابه
Glutamate receptors: the cause or cure in perinatal white matter injury?
Glutamate toxicity from hypoxia-ischaemia during the perinatal period causes white matter injury that can result in long-term motor and intellectual disability. Blocking ionotropic glutamate receptors (GluRs) has been shown to inhibit oligodendrocyte injury in vitro, but GluR antagonists have not yet proven helpful in clinical studies. The opposite approach of activating GluRs on developing oli...
متن کاملVulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?
As clinicians attempt to understand the underlying reasons for the vulnerability of different regions of the developing brain to injury, it is apparent that little is known as to how hypoxia-ischemia may affect the cerebrovasculature in the developing infant. Most of the research investigating the pathogenesis of perinatal brain injury following hypoxia-ischemia has focused on excitotoxicity, o...
متن کاملWhite Matter Injury of Prematurity: Its Mechanisms and Clinical Features
A developing central nervous system is vulnerable to various insults such as infection and ischemia. While increased understanding of the dynamic nature of brain development allows a deeper insight into the pathophysiology of perinatal brain injury, the precise nature of specific fetal and neonatal brain injuries and their short- and long-term clinical consequences need special attention and fu...
متن کاملMaturation-dependent vulnerability of perinatal white matter in premature birth.
Survivors of premature birth have a predilection for perinatal brain injury, especially to periventricular cerebral white matter. Periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia) and ...
متن کاملFailure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain
Preterm birth is very strongly associated with maternal/foetal inflammation and leads to permanent neurological deficits. These deficits correlate with the severity of white matter injury, including maturational arrest of oligodendrocytes and hypomyelination. Preterm birth and exposure to inflammation causes hypothyroxinemia. As such, supplementation with thyroxine (T4) seems a good candidate t...
متن کامل