The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus
نویسندگان
چکیده
As the first marine teleost demonstrated to have the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, rabbitfish Siganus canaliculatus provides a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. Here the potential roles of miR-33 in such regulation were investigated. The miR-33 gene was identified within intron 16 of the gene encoding sterol regulatory element-binding protein 1 (Srebp1), an activator of LC-PUFA biosynthesis. Expression of miR-33 in rabbitfish tissues correlated with that of srebp1, while its expression in liver was highly responsive to ambient salinities and PUFA components, factors affecting LC-PUFA biosynthesis. Srebp1 activation promoted the expression of Δ4 and Δ6 Δ5 fatty acyl desaturases (Fad), key enzymes for LC-PUFA biosynthesis, accompanied by elevated miR-33 abundance in rabbitfish hepatocytes. miR-33 overexpression induced the expression of the two fad, but suppressed that of insulin-induced gene 1 (insig1), which encodes a repressor blocking Srebp proteolytic activation and has targeting sites of miR-33. These results indicated that miR-33, cooperating with Srebp1, may be involved in regulation of LC-PUFA biosynthesis by facilitating fad expression, probably through targeting insig1. To our knowledge, this is the first report of the participation of miR-33 in LC-PUFA biosynthesis in vertebrates.
منابع مشابه
miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus.
Biosynthesis in vertebrates of long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids requires the catalysis by fatty acyl desaturases (Fads). A vertebrate Fad with Δ4 activity catalyzing the direct conversion of 22:5n-3 to DHA was discovered in the marine teleost rabbitfish Siganus canalicula...
متن کاملHepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understa...
متن کاملCloning, Functional Characterization and Nutritional Regulation of Δ6 Fatty Acyl Desaturase in the Herbivorous Euryhaline Teleost Scatophagus Argus
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the he...
متن کاملLong-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.
Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine tele...
متن کاملLong chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity.
Solea senegalensis is an unusual marine teleost as it has very low dietary requirement for long-chain polyunsaturated fatty acids (LC-PUFA) during early development. Aquaculture is rapidly becoming the main source of health-beneficial fish products for human consumption. This, associated with limited supply of LC-PUFA-rich ingredients for fish feeds, render S. senegalensis a highly interesting ...
متن کامل