Molecular organization of hydrophobic molecules and co-adsorbed water in SBA-15 ordered mesoporous silica material.

نویسندگان

  • Randy Mellaerts
  • Maarten B J Roeffaers
  • Kristof Houthoofd
  • Michiel Van Speybroeck
  • Gert De Cremer
  • Jasper A G Jammaer
  • Guy Van den Mooter
  • Patrick Augustijns
  • Johan Hofkens
  • Johan A Martens
چکیده

The purpose of this study was to improve our understanding of the molecular organization of hydrophobic guest molecules in the presence of co-adsorbed water inside SBA-15 ordered mesoporous silica material. Understanding this adsorption competition is essential in the development of applications of controlled adsorption and desorption. The poorly water soluble drug compound itraconazole and the fluorescent probe Nile red were selected for the study. The interaction between itraconazole and SBA-15 was investigated using FT-IR, (1)H MAS NMR and (29)Si MAS NMR spectroscopy, by determination of adsorption isotherms and release kinetics in simulated gastric fluid. The distribution and migration of the hydrophobic fluorescent probe Nile red was visualized in situ using confocal fluorescence microscopy. For both molecules, there was a pronounced influence of the co-adsorbed water on adsorption, hydrophobic aggregation and migration in SBA-15 pores. These insights contribute to the development of practical methods for loading ordered mesoporous silica materials with hydrophobic molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

A study on the catalytic activity of a new acidic ordered mesoporous silica (SBA-15)

SBA-15 is an interesting mesoporous silica material having highly ordered nanopores and a large surface area, which is widely employed as a catalyst. This mesoporous silica due to silanol groups is easily functionalized by various organic materials. A new acidic ordered functionalized mesoporous silica (SBA-15-Aminopropyl-Benzyl-SO3H) has been introduced as an efficient catalyst for ...

متن کامل

Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials.

This in vitro study reports on the enhanced release of the hydrophobic drug itraconazole from the ordered mesoporous SBA-15 silica material and on the existence of a critical mesopore diameter for enhancing release.

متن کامل

Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring ...

متن کامل

Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA.

An oxygen-evolving photosynthetic reaction center complex (PSII) was adsorbed into nanopores in SBA, a mesoporous silica compound. We purified the dimer of PSII complex from a thermophilic cyanobacterium, Thermosynechococcus vulcanus, which grows optimally at 57 °C. The thermally stable PSII dimeric complex has a diameter of 20 nm and a molecular mass of 756 kDa and binds more than 60 chlorophy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 2011