The impact of sampling methods on bias and variance in stochastic linear programs

نویسندگان

  • Michael Freimer
  • Jeff T. Linderoth
  • Douglas J. Thomas
چکیده

Stochastic linear programs can be solved approximately by drawing a subset of all possible random scenarios and solving the problem based on this subset, an approach known as sample path optimization. The value of the optimal solution to the sampled problem provides an estimate of the true objective function value. This estimator is known to be optimistically biased; the expected optimal objective function value for the sampled problem is lower (for minimization problems) than the optimal objective function value for the true problem. We investigate how two alternative sampling methods, antithetic variates and Latin Hypercube sampling, affect both the bias and variance, and thus the mean squared error (MSE), of this estimator. For a simple example, we analytically express the reductions in bias and variance obtained by these two alternative sampling methods. For eight test problems from the literature, we computationally investigate the impact of these sampling methods on bias and variance. We find that both sampling methods are effective at reducing mean squared error, with Latin Hypercube sampling outperforming antithetic variates. Whether the bias reduction or variance reduction plays a larger role in MSE reduction is problem and parameter specific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming

Monte Carlo sampling-based estimators of optimality gaps for stochastic programs are known to be biased. When bias is a prominent factor, estimates of optimality gaps tend to be large on average even for high-quality solutions. This diminishes our ability to recognize high-quality solutions. In this paper, we present a method for reducing the bias of the optimality gap estimators for two-stage ...

متن کامل

Variance reduction in sample approximations of stochastic programs

This paper studies the use of randomized Quasi-Monte Carlo methods (RQMC) in sample approximations of stochastic programs. In high dimensional numerical integration, RQMC methods often substantially reduce the variance of sample approximations compared to MC. It seems thus natural to use RQMC methods in sample approximations of stochastic programs. It is shown, that RQMC methods produce epi-con...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2012