Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene.

نویسندگان

  • Ayelet Fishman
  • Ying Tao
  • William E Bentley
  • Thomas K Wood
چکیده

After discovering that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes nitrobenzene to 4-nitrocatechol, albeit at a very low rate, this reaction was improved using directed evolution and saturation mutagenesis. Screening 550 colonies from a random mutagenesis library generated by error-prone PCR of tmoAB using Escherichia coli TG1/pBS(Kan)T4MO on agar plates containing nitrobenzene led to the discovery of nitrocatechol-producing mutants. One mutant, NB1, contained six amino acid substitutions (TmoA Y22N, I84Y, S95T, I100S, S400C; TmoB D79N). It was believed that position I100 of the alpha subunit of the hydroxylase (TmoA) is the most significant for the change in substrate reactivity due to previous results in our lab with a similar enzyme, toluene ortho-monooxygenase of Burkholderia cepacia G4. Saturation mutagenesis at this position resulted in the generation of two more nitrocatechol mutants, I100A and I100S; the rate of 4-nitrocatechol formation by I100A was more than 16 times higher than that of wild-type T4MO at 200 microM nitrobenzene (0.13 +/- 0.01 vs. 0.008 +/- 0.001 nmol/min.mg protein). HPLC and mass spectrometry analysis revealed that variants NB1, I100A, and I100S produce 4-nitrocatechol via m-nitrophenol, while the wild-type produces primarily p-nitrophenol and negligible amounts of nitrocatechol. Relative to wild-type T4MO, whole cells expressing variant I100A convert nitrobenzene into m-nitrophenol with a Vmax of 0.61 +/- 0.037 vs. 0.16 +/- 0.071 nmol/min.mg protein and convert m-nitrophenol into nitrocatechol with a Vmax of 3.93 +/- 0.26 vs. 0.58 +/- 0.033 nmol/min.mg protein. Hence, the regiospecificity of nitrobenzene oxidation was changed by the random mutagenesis, and this led to a significant increase in 4-nitrocatechol production. The regiospecificity of toluene oxidation was also altered, and all of the mutants produced 20% m-cresol and 80% p-cresol, while the wild-type produces 96% p-cresol. Interestingly, the rate of toluene oxidation (the natural substrate of the enzyme) by I100A was also higher by 65% (7.2 +/- 1.2 vs. 4.4 +/- 0.3 nmol/min mg protein). Homology-based modeling of TmoA suggests reducing the size of the side chain of I100 leads to an increase in the width of the active site channel, which facilitates access of substrates and promotes more flexible orientations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone.

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 was found to oxidize nitrobenzene (NB) to form m-nitrophenol (m-NP, 72%) and p-NP (28%) with an initial rate of 0.098 and 0.031 nmol/(min mg protein), respectively. It was also discovered that wild-type ToMO forms 4-nitrocatechol (4-NC) from m-NP and p-NP with an initial rate of 0.15 and 0.0082 nmol/(min mg protein), respective...

متن کامل

Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering

for AICHE 2004 [15C12] Advances in Biocatalysis and Protein Engineering Tailoring Toluene para-Monooxygenase of Ralstonia pickettii PKO1 for Regiospecific Oxidation of Aromatics Using Active Site Engineering A. Fishman, Y. Tao, W. E. Bentley, and T. K. Wood University of Connecticut, Storrs, CT University of Maryland, College Park, MD Oxygenases are promising biocatalysts for performing selecti...

متن کامل

Toluene-4-monooxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KR1.

Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol w...

متن کامل

A spectrophotometric method for the quantification of an enzyme activity producing 4-substituted phenols: determination of toluene-4-monooxygenase activity.

A spectrophotometric method for the quantitative determination of an enzyme activity resulting in the accumulation of 4-substituted phenols is described in this article. Toluene-4-monooxygenase (T4MO) activity in whole cells of Pseudomonas mendocina KR1 is used to demonstrate this method. This spectrophotometric assay is based on the coupling of T4MO activity with tyrosinase activity. The 4-sub...

متن کامل

Toluene monooxygenase-catalyzed epoxidation of alkenes.

Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 2004