Periods of Factors of the Fibonacci Word
نویسنده
چکیده
We show that if w is a factor of the infinite Fibonacci word, then the least period of w is a Fibonacci number.
منابع مشابه
Abelian Repetitions in Sturmian Words
We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. If km denotes the maximal exponent of an abelian repetition of period m, we prove that lim sup km/m ≥ √ 5 for any Sturmian word, an...
متن کاملSome Properties of the Singular Words of the Fibonacci Word
The combinatorial properties of the Fibonacci innnite word are of great interest in some aspects of mathematics and physics, such as number theory, fractal geometry, formal language, computational complexity , quasicrystals etc. In this note, we introduce the singular words of the Fibonacci innnite word and discuss their properties. We establish two decompositions of the Fibonacci word in singu...
متن کاملCounting Lyndon Factors
In this paper, we determine the maximum number of distinct Lyndon factors that a word of length n can contain. We also derive formulas for the expected total number of Lyndon factors in a word of length n on an alphabet of size σ, as well as the expected number of distinct Lyndon factors in such a word. The minimum number of distinct Lyndon factors in a word of length n is 1 and the minimum tot...
متن کاملCollapse: A Fibonacci and Sturmian Game
We explore the properties of Collapse, a number game closely related to Fibonacci words. In doing so, we fully classify the set of periods (minimal or not) of finite Fibonacci words via careful examination of the Exceptional (sometimes called singular) finite Fibonacci words. Collapse is not a game in the Game Theory sense, but rather in the recreational sense, like the 15-puzzle (the game wher...
متن کاملAbelian powers and repetitions in Sturmian words
Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79–95, 2011) proved that at every position of an infinite Sturmian word starts an abelian power of exponent k, for every positive integer k. Here, we improve on this result, studying the maximal exponent of abelian powers and abelian repetitions (an abelian repetition is the analogous of a fractional power in the abelian setting) occurring in...
متن کامل