Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions.
نویسندگان
چکیده
We have previously observed that von Willebrand factor (vWF) plays an important role in platelet deposition on subendothelium at low values of wall shear rate (200 to 400 seconds-1). In the present study, we have investigated the mechanism responsible for such a defect in platelet deposition at low shear rates in the absence of vWF. Blood from both normal and von Willebrand's disease (vWD) animals was exposed to de-endothelialized aorta from normal pigs for a range of shear rates (200 to 3,000 seconds-1) and exposure times (three to 30 minutes) in a tubular perfusion chamber. Variations in the method of inhibiting coagulation (none, heparin, citrate, hirudin, and EDTA) and of perfusing blood (in vitro v ex vivo) were compared by determining the influence of wall shear rate and vWF on the deposition of 111In-labeled platelets on subendothelium. Whereas platelet deposition was reduced in the absence of vWF for all experimental variations at high shear rates (greater than 850 seconds-1), a defect was observed at low shear rates only when heparinized blood was exposed by means of an ex vivo perfusion system. Maximum sensitivity of the measurement occurs under ex vivo perfusion conditions due to the reduced ability of platelets to deposit in normal blood when recirculated in vitro. Our results indicate that vWF mediates platelet-vessel wall interaction even at low shear rates and that such effect can only be observed in systems where platelet function is minimally affected by the experimental conditions.
منابع مشابه
Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: a defect in platelet spreading.
A bleeding disorder with absent collagen-induced platelet aggregation and adhesion has been described in a patient whose platelets failed to express surface glycoprotein Ia. We studied the interaction of her platelets with subendothelium in an annular perfusion chamber and the interaction with purified human collagen type III in a rectangular perfusion system under flow conditions. Platelet adh...
متن کاملPlatelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibα.
Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα...
متن کاملVon Willebrand factor in the vessel wall mediates platelet adherence.
A monoclonal antibody directed against the von Willebrand factor moiety (vWF) of factor VIII-von Willebrand factor (FVIII-vWF), which blocks ristocetin-induced platelet aggregation as well as the binding of FVIII-vWF to platelets in the presence of ristocetin, inhibited platelet adherence to human artery subendothelium when present in normal flowing blood. This monoclonal antibody, CLB-RAg 35, ...
متن کاملPlatelet von Willebrand factor: evidence for its involvement in platelet adhesion to collagen.
Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of ...
متن کاملPlatelet adhesion and aggregation on human type VI collagen surfaces under physiological flow conditions.
Type VI collagen is a subendothelial constituent that binds von Willebrand factor (vWF) and platelets. The interaction of platelets with type VI collagen and the roles of platelet glycoprotein (GP) receptors and vWF were studied under flow conditions using epi-fluorescent videomicroscopy coupled with digital image processing. We found that surface coverage was less than 6% on collagen VI at a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 73 4 شماره
صفحات -
تاریخ انتشار 1989