Advanced Analysis of Quantum Contextuality in a Psychophysical Double-Detection Experiment
نویسندگان
چکیده
The results of behavioral experiments typically exhibit inconsistent connectedness, i.e., they violate the condition known as “no-signaling,” “no-disturbance,” or “marginal selectivity.” This prevents one from evaluating these experiments in terms of quantum contextuality if the latter understood traditionally (as, e.g., in the Kochen-Specker theorem or Bell-type inequalities). The Contextualityby-Default (CbD) theory separates contextuality from inconsistent connectedness. When applied to quantum physical experiments that exhibit inconsistent connectedness (due to context-dependent errors and/or signaling), the CbD computations reveal quantum contextuality in spite of this. When applied to a large body of published behavioral experiments, the CbD computations reveal no quantum contextuality: all context-dependence in these experiments is described by inconsistent connectedness alone. Until recently, however, experimental analysis of contextuality was confined to so-called cyclic systems of binary random variables. Here, we present the results of a psychophysical double-detection experiment that do not form a cyclic system: their analysis requires that we use a recent modification of CbD, one that makes the class of noncontextual systems more restricted. Nevertheless our results once again indicate that when inconsistent connectedness is taken into account, the system exhibits no contextuality.
منابع مشابه
Exploration of Contextuality in a Psychophysical Double-Detection Experiment
The Contextuality-by-Default (CbD) theory allows one to separate contextuality from context-dependent errors and violations of selective influences (aka “no-signaling” or “no-disturbance” principles). This makes the theory especially applicable to behavioral systems, where violations of selective influences are ubiquitous. For cyclic systems with binary random variables, CbD provides necessary ...
متن کاملTesting Contextuality in Cyclic Psychophysical Systems of High Ranks
Contextuality-by-Default (CbD) is a mathematical framework for understanding the role of context in systems with deterministic inputs and random outputs. A necessary and sufficient condition for contextuality was derived for cyclic systems with binary outcomes. In quantum physics, the cyclic systems of ranks n = 5, 4, and 3 are known as systems of Klyachko-type, EPR-Bell-type, and Leggett-Garg-...
متن کاملDecoherence and quantum contextuality
Decoherence is the most widely accepted mechanism to explain the loss of coherence in quantum systems. Here we show how simple (quantum) trajectory–based models can help to understand the physics behind decoherence processes. In particular, we will analyze with these models the relationship between decoherence and quantum contextuality in the double–slit experiment, where two (quantum) contexts...
متن کاملSome Examples of Contextuality in Physics: Implications to Quantum Cognition
Contextuality, the impossibility of assigning a single random variable to represent the outcomes of the same measurement procedure under different experimental conditions, is a central aspect of quantum mechanics. Thus defined, it appears in well-known cases in quantum mechanics, such as the double-slit experiment, the Bell-EPR experiment, and the Kochen-Specker theorem. Here we examine context...
متن کاملState-independent experimental test of quantum contextuality with a single trapped ion.
Using a single trapped ion, we have experimentally demonstrated state-independent violation of a recent version of the Kochen-Specker inequality in a three-level system (qutrit) that is intrinsically indivisible. Three ground states of the (171)Yb(+) ion representing a qutrit are manipulated with high fidelity through microwaves and detected with high efficiency through a two-step quantum jump ...
متن کامل