Collision-based mechanics of bipedal hopping.
نویسندگان
چکیده
The muscle work required to sustain steady-speed locomotion depends largely upon the mechanical energy needed to redirect the centre of mass and the degree to which this energy can be stored and returned elastically. Previous studies have found that large bipedal hoppers can elastically store and return a large fraction of the energy required to hop, whereas small bipedal hoppers can only elastically store and return a relatively small fraction. Here, we consider the extent to which large and small bipedal hoppers (tammar wallabies, approx. 7 kg, and desert kangaroo rats, approx. 0.1 kg) reduce the mechanical energy needed to redirect the centre of mass by reducing collisions. We hypothesize that kangaroo rats will reduce collisions to a greater extent than wallabies since kangaroo rats cannot elastically store and return as high a fraction of the mechanical energy of hopping as wallabies. We find that kangaroo rats use a significantly smaller collision angle than wallabies by employing ground reaction force vectors that are more vertical and center of mass velocity vectors that are more horizontal and thereby reduce their mechanical cost of transport. A collision-based approach paired with tendon morphometry may reveal this effect more generally among bipedal runners and quadrupedal trotters.
منابع مشابه
Collision-based energetic comparison of rolling and hopping over obstacles
Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping...
متن کاملA comparative collision-based analysis of human gait.
This study compares human walking and running, and places them within the context of other mammalian gaits. We use a collision-based approach to analyse the fundamental dynamics of the centre of mass (CoM) according to three angles derived from the instantaneous force and velocity vectors. These dimensionless angles permit comparisons across gait, species and size. The collision angle Φ, which ...
متن کاملExploring the Role of the Tail in Bipedal Hopping through Computational Evolution
Bipedal hopping has evolved as a mode of terrestrial locomotion in relatively few mammalian species. Despite large differences in body size, habitat use, and having evolved independently, all species that use bipedal hopping have remarkably similar limb morphology and posture. In addition, these species all have relatively long tails, presumably to assist in maintaining stability. However, the ...
متن کاملObstacle avoidance in a simple hopping robot
Obstacle avoidance in bipedal robots is achieved with the help of sensory feedback and closed loop control. Although computational power increased exponentially during the last years it is still the limiting factor for dynamic locomotion in uneven terrain. We introduce a simple robot architecture based on compliant leg behavior. With minimal sensory feedback we can derive stable 2D locomotion. ...
متن کاملExploring the Lombard Paradox in a Bipedal Musculoskeletal Robot
Towards advanced bipedal locomotion musculoskeletal system design has received much attention in recent years. It has been recognized that designing and developing new actuators with the properties of the human muscle-tendon complex is only one of the many tasks that have to be ful lled in order to come close to the powerful human musculoskeletal system enabling the human to such versatile dyna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2013