Influence of solvent quality on effective pair potentials between polymers in solution.
نویسندگان
چکیده
Solutions of interacting linear polymers are mapped onto a system of "soft" spherical particles interacting via an effective pair potential. This coarse-graining reduces the individual monomer-level description to a problem involving only the center of mass (c.m.) of the polymer coils. The effective pair potentials are derived by inverting the c.m. pair distribution function, generated in Monte Carlo simulations, using the hypernetted chain closure. The method, previously devised for the self-avoiding walk model of polymers in good solvent, is extended to the case of polymers in solvents of variable quality by adding a finite nearest-neighbor monomer-monomer attraction to the previous model and varying the temperature. The resulting effective pair potential is found to depend strongly on temperature and polymer concentration. At low concentration the effective interaction becomes increasingly attractive as the temperature decreases, eventually violating thermodynamic stability criteria. However, as polymer concentration is increased at fixed temperature, the effective interaction reverts to mostly repulsive behavior. These issues help to illustrate some fundamental difficulties encountered when coarse-graining complex systems via effective pair potentials.
منابع مشابه
Multi-blob coarse graining for ring polymer solutions.
We present a multi-scale molecular modeling of concentrated solutions of unknotted and non-concatenated ring polymers under good solvent conditions. The approach is based on a multi-blob representation of each ring polymer, which is capable of overcoming the shortcomings of single-blob approaches that lose their validity at concentrations exceeding the overlap density of the solution [A. Narros...
متن کاملInfluence of solvent quality on polymer solutions: a Monte Carlo study of bulk and interfacial properties.
The effect of solvent quality on dilute and semidilute regimes of polymers in solution is studied by means of Monte Carlo simulations. The equation of state, adsorption near a hard wall, wall-polymer surface tension, and effective depletion potential are all calculated as a function of concentration and solvent quality. We find important differences between polymers in good and theta solvents. ...
متن کاملThermodynamic study of ion- association in KNO3 solution in the mixed solvent (water +methanol)
The solubility of KNO3 in the mixed solvent (water 85%+methanol 15%) were determined by using solvent evaporating method at different temperatures (25, 30, 40, 50, 60 ;C). In addition the equilibrium constant of ion pair formation, KIP, for K+NO3 – ion-pair on the basis of Fuoss contact ion pair model was calculated. Upon choosing the extended Debye-Hückel model for estimating the mean activity...
متن کاملMany-body interactions and correlations in coarse-grained descriptions of polymer solutions.
We calculate the two-, three-, four-, and five-body (state-independent) effective potentials between the centers of mass (c.m.'s) of self-avoiding walk polymers by Monte Carlo simulations. For full overlap, these coarse-grained n-body interactions oscillate in sign as (-1)(n), and decrease in absolute magnitude with increasing n. We find semiquantitative agreement with a scaling theory, and use...
متن کاملThe investigation of ionic association in the CdF2 solution with the mixed solvent (water +ethanol +propanol) at 25°C
Using the mixed solvents, (water +ethanol + propanol), the solubility of CdF2 was determined byevaporating method at 25° C. The results showed that the sollbility, s, of CdF2 decreases bydecreasing the dielectric constant of the mixed solvent .Once the solubility of CdF2 was determined,the concentration solubility product, Ksp(c)=4s3, was calculated .Furthermore ,by estimating the meanactivity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2003