The 99th Fibonacci Identity
نویسندگان
چکیده
In the book Proofs that Really Count [1], the authors use combinatorial arguments to prove many identities involving Fibonacci numbers, Lucas numbers, and their generalizations. Among these, they derive 91 of the 118 identities mentioned in Vajda’s book [2], leaving 27 identities unaccounted. Eight of these identities, presented later in this paper, have such a similar appearance, the authors remark (on page 144) that “one good idea might solve them all.” In this paper, we provide elegant combinatorial proofs of these Fibonacci and Lucas identities along with generalizations to arbitrary initial conditions. Before examining these new identities, we warm up with the following well known identity, which will allow us to define terminology and illustrate our approach. Identity 1. For n ≥ 0,
منابع مشابه
Generalized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملBijective Proofs of Vajda’s Ninetieth Fibonacci Number Identity and Related Identities
This article provides the first bijective proof for a previously “uncounted” Fibonacci number identity of Vajda. Bijections on similar sets that illustrate a related family of Fibonacci number identities are also considered.
متن کاملIdentities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums
As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...
متن کاملFibonacci numbers and trigonometric identities
Webb & Parberry proved in 1969 a startling trigonometric identity involving Fibonacci numbers. This identity has remained isolated up to now, despite the amount of work on related polynomials. We provide a wide generalization of this identity together with what we believe (and hope!) to be its proper understanding.
متن کاملFibonacci Identities as Binomial Sums
To facilitate rapid numerical calculations of identities pertaining to Fibonacci numbers, we present each identity as a binomial sum. Mathematics Subject Classification: 05A10,11B39
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008