A PDZ-containing Scaffold Related to the Dystrophin Complex at the Basolateral Membrane of Epithelial Cells
نویسندگان
چکیده
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.
منابع مشابه
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes.
The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of a...
متن کاملPDZ-domain-directed basolateral targeting of the peripheral membrane protein FRMPD2 in epithelial cells.
Multi-PDZ (PSD-95/Discs large/Zonula-occludens-1) domain proteins play a crucial role in the establishment and maintenance of cell polarization. The novel multi-PDZ domain protein FRMPD2 is a potential scaffolding protein consisting of an N-terminal KIND domain, a FERM domain and three PDZ domains. Here we show that FRMPD2 is localized in a polarized fashion in epithelial cells at the basolater...
متن کاملA PDZ-binding motif controls basolateral targeting of syndecan-1 along the biosynthetic pathway in polarized epithelial cells.
The cell surface proteoglycan, syndecan-1, is essential for normal epithelial morphology and function. Syndecan-1 is selectively localized to the basolateral domain of polarized epithelial cells and interacts with cytosolic PDZ (PSD-95, discs large, ZO-1) domain-containing proteins. Here, we show that the polarity of syndecan-1 is determined by its type II PDZ-binding motif. Mutations within th...
متن کاملLin-7 targets the Kir 2.3 channel on the basolateral membrane via a L27 domain interaction with CASK.
Polarized expression of the Kir 2.3 channel in renal epithelial cells is influenced by the opposing activities of two different PDZ proteins. Mammalian Lin-7 (mLin-7) directly interacts with Kir 2.3 to coordinate basolateral membrane expression, whereas the tax interacting protein 1 (TIP-1), composed of a single PDZ domain, competes for interaction with mLin-7 and drives Kir 2.3 into the endocy...
متن کاملPdz-based Adaptor Proteins in Epi- Thelial Tight Junctions
Polarized protein deposition at the apical and basolateral membranes of epithelial cells is critical for the asymmetrical transport of ions and fluids across the epithelia. PDZ-based modular adaptor proteins are expressed in the junctional areas in epithelial cells and are generally part of a molecular scaffold that determines the localization and activity of ion channels, receptors, and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 145 شماره
صفحات -
تاریخ انتشار 1999