Evidence for voltage-dependent S4 movement in sodium channels
نویسندگان
چکیده
The mutation R1448C substitutes a cysteine for the outermost arginine in the fourth transmembrane segment (S4) of domain 4 in skeletal muscle sodium channels. We tested the accessibility of this cysteine residue to hydrophilic methanethiosulfonate reagents applied to the extracellular surface of cells expressing these mutant channels. The reagents irreversibly increase the rate of inactivation of R1448C, but not wild-type, channels. Cysteine modification is voltage dependent, as if depolarization extends this residue into the extracellular space. The rate of cysteine modification increases with depolarization and has the voltage dependence and kinetics expected for the movement of a voltage sensor controlling channel gating.
منابع مشابه
Molecular Basis of Charge Movement in Voltage-Gated Sodium Channels
Voltage-dependent movement of a sodium channel S4 segment was examined by cysteine scanning mutagenesis and testing accessibility of the residues to hydrophilic cysteine-modifying reagents. These experiments indicate that 2 charged S4 residues move completely from an internally accessible to an externally accessible location in response to depolarization by passage through a short "channel" in ...
متن کاملA New Twist in the Saga of Charge Movement in Voltage-Dependent Ion Channels
voltage-gated channels and contribute to the gating module that senses the membrane potential and transmits this information to the activation gate. Voltage-dependent ion channels are exquisitely sensi-Seoh et al., 1996). Second, the aqueous accessibility of tive to membrane potential, so much so that a depolar-cysteines or histidines substituted into S4 segments ization of only 10 mV can cause...
متن کاملTracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac
Voltage-gated sodium channels mediate the initiation and propagation of action potentials in excitable cells. Transmembrane segment S4 of voltage-gated sodium channels resides in a gating pore where it senses the membrane potential and controls channel gating. Substitution of individual S4 arginine gating charges (R1-R3) with smaller amino acids allows ionic currents to flow through the mutant ...
متن کاملParticipation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK) K+ channels.
The S4 transmembrane segment is the primary voltage sensor in voltage-dependent ion channels. Its movement in response to changes in membrane potential leads to the opening of the activation gate, which is formed by a separate structural component, the S6 segment. Here we show in voltage-, Ca2+-, and Mg2+-dependent, large conductance K+ channels that the S4 segment participates not only in volt...
متن کاملInhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.
ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 microM, the toxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 15 شماره
صفحات -
تاریخ انتشار 1995