Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells.

نویسندگان

  • Cenchao Shen
  • Terence W Turney
  • Terrence J Piva
  • Bryce N Feltis
  • Paul F A Wright
چکیده

Oxidative damage to cells and tissues from free radicals induced by ultraviolet (UV) irradiation can be attenuated by sunscreen components, such as ZnO and TiO2 nanoparticles (NPs). Although it is known that reactive oxygen species (ROS) are generated by cells upon exposure to ZnO and TiO2 NPs, it is unknown to what extent the amount generated is altered with UV co-exposure. As it is a critical component for determining the relative risk of these NPs when used in sunscreen formulations, we have investigated ROS generation by these NPs in human THP-1 monocyte immune cells following UVA co-exposure. Whilst the applied UVA dose (6.7 J cm(-2)) did not alter cell viability after 24 h, it induced significant ROS production - causing a 7-fold increase in intracellular peroxide and 3.3-fold increase in mitochondrial superoxide levels after 1 h. However, co-exposure to NPs and UVA generated the same or less ROS than with UVA exposure alone, with the exception of anatase TiO2, which showed significantly increased levels. These findings indicate that ROS generation from nanosunscreens is, in most cases, an insignificant contributor to the overall risk associated with oxidative stress from UVA exposure itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2:Mn nanoparticles as enhanced UVA absorption, photostable sunscreen components

Titanium oxide (TiO2) nanoparticles are added to sunscreens as they have broad absorbance across the whole UV spectrum. Although photostable, TiO2 nanoparticles can de-excite via surface states giving rise to reactive oxygen species (ROS) formation within the sunscreen formulation. An increased ROS load can degrade organic components within the sunscreen, such as UV absorbers or anti-oxidants, ...

متن کامل

Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells

Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...

متن کامل

Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS

Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and 10 μg/mL) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effe...

متن کامل

ترکیبات موجود در فرآورده‌های ضدآفتاب: دی‌اکسیدتیتانیوم (TiO2)

The use of sunscreens should also be recommended in order to work against all kind of ultarviolet (UV)-induced skin damage such as photoallergies, skin wrinkles, sunburn or even skin cancer. Sunscreens contain chemical filters (organic absorb regularly UVB radiation) and physical filters (e.g., TiO2 and ZnO). The second group has been said to reflect and scatter UVB and UVA radiation. TiO2 is ...

متن کامل

Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

Background, Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective, Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. Metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2014