Fusing Acoustic Feature Representations for Computational Paralinguistics Tasks

نویسندگان

  • Heysem Kaya
  • Alexey A. Karpov
چکیده

The field of Computational Paralinguistics is rapidly growing and is of interest in various application domains ranging from biomedical engineering to forensics. The INTERSPEECH ComParE challenge series has a field-leading role, introducing novel problems with a common benchmark protocol for comparability. In this work, we tackle all three ComParE 2016 Challenge corpora (Native Language, Sincerity and Deception) benefiting from multi-level normalization on features followed by fast and robust kernel learning methods. Moreover, we employ computer vision inspired low level descriptor representation methods such as the Fisher vector encoding. After nonlinear preprocessing, obtained Fisher vectors are kernelized and mapped to target variables by classifiers based on Kernel Extreme Learning Machines and Partial Least Squares regression. We finally combine predictions of models trained on popularly used functional based descriptor encoding (openSMILE features) with those obtained from the Fisher vector encoding. In the preliminary experiments, our approach has significantly outperformed the baseline systems for Native Language and Sincerity sub-challenges both in the development and test sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of developmental disorders from speech signals using submodular feature selection

We present our system for the Interspeech 2013 Computational Paralinguistics Autism Sub-challenge. Our contribution focuses on improving classification accuracy of developmental disorders by applying a novel feature selection technique to the rich set of acoustic-prosodic features provided for this purpose. Our feature selection approach is based on submodular function optimization. We demonstr...

متن کامل

Emotion in the singing voice - a deeperlook at acoustic features in the light ofautomatic classification

We investigate the automatic recognition of emotions in the singing voice and study the worth and role of a variety of relevant acoustic parameters. The data set contains phrases and vocalises sung by eight renowned professional opera singers in ten different emotions and a neutral state. The states are mapped to ternary arousal and valence labels. We propose a small set of relevant acoustic fe...

متن کامل

Ten Recent Trends in Computational Paralinguistics

The field of computational paralinguistics is currently emerging from loosely connected research in speech analysis, including speaker classification and emotion recognition. Starting from a broad perspective on the state-of-the-art in this field, we combine these facts with a bit of ‘tea leaf reading’ to identify ten trends that might characterise the next decade of research: taking into accou...

متن کامل

The INTERSPEECH 2017 Computational Paralinguistics Challenge: Addressee, Cold & Snoring

The INTERSPEECH 2017 Computational Paralinguistics Challenge addresses three different problems for the first time in research competition under well-defined conditions: In the Addressee sub-challenge, it has to be determined whether speech produced by an adult is directed towards another adult or towards a child; in the Cold sub-challenge, speech under cold has to be told apart from ‘healthy’ ...

متن کامل

Acoustic group feature selection using wrapper method for automatic eating condition recognition

In this paper, we present a wrapper-based acoustic group feature selection system for the INTERSPEECH 2015 Computational Paralinguistics Challenge (ComParE) 2015, Eating Condition (EC) Sub-challenge. The wrapper-based method has two components: the feature subset evaluation and the feature space search. The feature subset evaluation is performed using Support Vector Machine (SVM) classifiers. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016