Speeding Up the Wrapper Feature Subset Selection in Regression by Mutual Information Relevance and Redundancy Analysis
نویسندگان
چکیده
A hybrid filter/wrapper feature subset selection algorithm for regression is proposed. First, features are filtered by means of a relevance and redundancy filter using mutual information between regression and target variables. We introduce permutation tests to find statistically significant relevant and redundant features. Second, a wrapper searches for good candidate feature subsets by taking the regression model into account. The advantage of a hybrid approach is threefold. First, the filter provides interesting features independently from the regression model and, hence, allows for an easier interpretation. Secondly, because the filter part is computationally less expensive, the global algorithm will faster provide good candidate subsets compared to a stand-alone wrapper approach. Finally, the wrapper takes the bias of the regression model into account, because the regression model guides the search for optimal features. Results are shown for the ‘Boston housing’ and ‘orange juice’ benchmarks based on the multilayer perceptron regression model.
منابع مشابه
mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
This paper presents a hybrid filter–wrapper feature subset selection algorithm based on particle swarm optimization (PSO) for support vector machine (SVM) classification. The filter model is based on the mutual information and is a composite measure of feature relevance and redundancy with respect to the feature subset selected. The wrapper model is a modified discrete PSO algorithm. This hybri...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کامل