Adaptive synchronization in multi-hop TSCH networks
نویسندگان
چکیده
Time Slotted Channel Hopping (TSCH) enables highly reliable and ultra-low power wireless networking, and is at the heart of multiple industrial standards. It has become the de facto standard for industrial low-power wireless solutions, and a true enabler for the Industrial Internet of Things. In a TSCH network, all nodes remain tightly synchronized by periodically communicating with one another to compensate for clock drift. The synchronization algorithm used in a network determines how often the nodes need to re-synchronize, which greatly influences their energy consumption. This article presents an adaptive synchronization technique which allows a node to learn and predict how its clock is drifting relative to its neighbors’, and coordinates the instants at which the nodes re-synchronize. This technique increases synchronization accuracy, while reducing synchronization communication overhead, thereby extending the battery lifetime of the network. Through simulation, we show how adaptive synchronization allows the nodes in a 3-hop deep network to maintain synchronization within 76 ls of one another, while sending an average of only 18.9 re-synchronization packets per hour, a 83% reduction compared to a network not using adaptive synchronization. Through experimentation on a range of hardware platforms, we show how adaptive synchronization is needed for interoperability. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
An Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملCompetition: Adaptive Time-Slotted Channel Hopping
Time-Slotted Channel Hopping (TSCH) from the IEEE 802.15.4-2015 standard uses channel hopping to combat interference and frequency-selective fading. It has attracted large attention from the research community due to its properties: high reliability in terms of packet delivery rates, and increased predictability in terms of energy consumption and latency, as compared to commonly used lowpower C...
متن کاملA Hidden Node Aware Network Allocation Vector Management System for Multi-hop Wireless Ad hoc Networks
Many performance evaluations for IEEE 802.11distributed coordination function (DCF) have been previouslyreported in the literature. Some of them have clearly indicatedthat 802.11 MAC protocol has poor performance in multi-hopwireless ad hoc networks due to exposed and hidden nodeproblems. Although RTS/CTS transmission scheme mitigatesthese phenomena, it has not been successful in thoroughlyomit...
متن کاملToward secure and scalable time synchronization in ad hoc networks
Time synchronization is crucial in ad hoc networks. Due to the infrastructure-less and dynamic nature, time synchronization in such environments is vulnerable to various attacks. Moreover, time synchronization protocols such as IEEE 802.11 TSF (Timing Synchronization Function) often suffer from scalability problem. In this paper, we address the security and the scalability problems of time sync...
متن کاملFast distributed multi-hop relative time synchronization protocol and estimators for wireless sensor networks
The challenging problem of time synchronization in wireless sensor networks is considered in this paper, where a new distributed protocol is proposed for both local and multi-hop synchronization. The receiver-to-receiver paradigm is used, which has the advantage of reducing the time-critical-path and thus improving the accuracy compared to common sender-to-receiver protocols. The protocol is fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Networks
دوره 76 شماره
صفحات -
تاریخ انتشار 2015