Unsupervised Domain Adaptation by Backpropagation
نویسندگان
چکیده
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of “deep” features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation. Overall the whole approach can be implemented with little effort using any of the deep-learning packages.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDeep Reconstruction-Classification Networks for Unsupervised Domain Adaptation
In this paper, we propose a novel unsupervised domain adaptation algorithm based on deep learning for visual object recognition. Specifically, we design a new model called Deep ReconstructionClassification Network (DRCN), which jointly learns a shared encoding representation for two tasks: i) supervised classification of labeled source data, and ii) unsupervised reconstruction of unlabeled targ...
متن کاملDeep Hashing Network for Unsupervised Domain Adaptation Supplementary Material
1. Loss Function Derivative In this section we outline the derivative of Equation 8 for the backpropagation algorithm; min U J = L(Us) + γM(Us, Ut) + ηH(Us, Ut), (8) where, U := {Us ∪ Ut} and (γ, η) control the importance of domain adaptation (1) and target entropy loss (7) respectively. In the following subsections, we outline the derivative of the individual terms w.r.t. the input U. 1.1. Der...
متن کاملDomain adaptation networks for noisy image classification
In this thesis, we propose a novel semi-supervised clean-noisy datasets adaptation algorithm. We transfer the knowledge learned on clean images to unlabeled noise-distorted ones. This modification on standard deep networks produce stable classification performance on all distortion levels, which brings benefit to real-world cases. Specifically, we propose a strategy to jointly learn a shared fe...
متن کاملUnsupervised Domain Adaptation with Residual Transfer Networks
The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source doma...
متن کامل