Equitable Coloring of Corona Products of Graphs
نویسندگان
چکیده
In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper, we consider an equitable coloring of some corona products H G of two graphs G and H. In particular, we show that deciding the colorability of H G is NP-complete even if G is 4-regular and H is . 2 K Next, we prove exact values or upper bounds on the equitable chromatic number ( ) , H G = χ where G is an equitably 3or 4colorable graph and H is an r-partite graph, a path, a cycle or a complete graph. Our proofs are constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that an equitable coloring of G is given. As a by-product we obtain a new class of graphs that confirm Equitable Coloring Conjecture.
منابع مشابه
Equitable colorings of corona multiproducts of graphs
A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted χ=(G). It is known that this problem is NP-hard in general case and remains so for corona graphs. In [12] Lin i Chan...
متن کاملEquitable total coloring of corona of cubic graphs
The minimum number of total independent sets of V ∪ E of graph G(V,E) is called the total chromatic number of G, denoted by χ′′(G). If difference of cardinalities of any two total independent sets is at most one, then the minimum number of total independent partition sets of V ∪E is called the equitable total chromatic number, and denoted by χ′′ =(G). In this paper we consider equitable total c...
متن کاملEquitable coloring of corona products of cubic graphs is harder than ordinary coloring
A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig χ= for coronas of cubic graphs is studied. Although the prob...
متن کاملEquitable Colorings of l-Corona Products of Cubic Graphs
A graph G is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest integer k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig the value of equitable chromatic number for multic...
متن کاملEquitable Coloring of Interval Graphs and Products of Graphs
We confirm the equitable ∆-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.
متن کامل