Production of Cost-Effective Mesoporous Materials from Prawn Shell Hydrocarbonization

نویسندگان

  • S. Román
  • B. Ledesma
  • A. Álvarez-Murillo
  • E. Sabio
  • J. F. González
  • C. M. González
چکیده

In this work, prawn shell was studied as raw material for the production of mesoporous adsorbents via hydrocarbonization, studying the effect of temperature and time on the process reactivity and final characteristics of the hydrochars. By suitable characterization technique analyses (N2 adsorption at 77 K, SEM observation, ultimate analysis, surface composition), the materials were examined. It was found that in both cases mesoporous materials with low values of S BET due to the presence of CaCO3 on the material structure. In order to provide a potential application for these materials, the adsorption behaviour of hydrochars (HCs) as well as that of pristine prawn shells and ashes from prawn shell combustion was studied for the first time with the model compound p-nitrophenol (PNP). The results indicated that HC treatment was beneficial and enhanced adsorption performance, especially at high values of equilibrium concentration, attaining adsorption capacities up to 1.6 mg g(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres.

Hollow mesoporous silica spheres have recently attracted increasing attention. However, effective synthesis of uniform hollow mesoporous spheres with controllable well-defined pore structures for fundamental research and practical applications has remained a significant challenge. In this work, a straightforward and effective "cationic surfactant assisted selective etching" synthetic strategy w...

متن کامل

Surfactant Removal from Mesoporous ‎Silica Shell of Core-Shell Magnetic ‎Microspheres by Modified Supercritical ‎CO2‎

   In this paper, a kind of core–shell magnetic mesoporous microspheres of Fe3O4@SiO2@meso-SiO2 with high surface areawas prepared, where magnetic Fe3O4 nanospheres were used as the inner core, tetraethyl orthosilicate (TEOS) as silica source, and cetyltrimethylamonium bromide (CTAB) as pore forming agent. Methanol-enhanced s...

متن کامل

Cost Effective Heat Exchanger Network Design with Mixed Materials of Construction

This paper presents a simple methodology for cost estimation of a near optimal heat exchanger network, which comprises mixed materials of construction. Intraditional pinch technology and mathematical programming it is usually assumed that all heat exchangers in a network obey a single cost model. This implies that all heat exchangers  in a network are of the same type and use the same mate...

متن کامل

Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures.

We present a general strategy to synthesize uniform MnCo2O4 submicrospheres with various hollow structures. By using MnCo-glycolate submicrospheres as the precursor with proper manipulation of ramping rates during the heating process, we have fabricated hollow MnCo2O4 submicrospheres with multilevel interiors, including mesoporous spheres, hollow spheres, yolk-shell spheres, shell-in-shell sphe...

متن کامل

Facile and Economic Method for the Preparation of Core-Shell Magnetic Mesoporous Silica

In this work core-shell structure Fe3O4@SiO2@meso-SiO2 microsphere has been successfully prepared. An inorganic magnetic core has been coated with multi-shell structure, dense nonporous silica as an inner layer and mesoporous silica as an outer layer. The dense silica shell can enhance the stability and minimize the negative effect of acidic condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016