A comparison of the use of X-ray and neutron tomographic core scanning techniques for drilling projects: insights from scanning core recovered during the Alpine Fault Deep Fault Drilling Project
نویسندگان
چکیده
It is now commonplace for non-destructive X-ray computed tomography (CT) scans to be taken of core recovered during a drilling project. However, other forms of tomographic scanning are available, and these may be particularly useful for core that does not possess significant contrasts in density and/or atomic number to which X-rays are sensitive. Here, we compare CT and neutron tomography (NT) scans of 85mm diameter core recovered during the first phase of the Deep Fault Drilling Project (DFDP-1) through New Zealand’s Alpine Fault. For the instruments used in this study, the highest resolution images were collected in the NT scans. This allows clearer imaging of some rock features than in the CT scans. However, we observe that the highly neutron beam attenuating properties of DFDP-1 core diminish the quality of images towards the interior of the core. A comparison is also made of the suitability of these two scanning techniques for a drilling project. We conclude that CT scanning is far more favourable in most circumstances. Nevertheless, it could still be beneficial to take NT scans over limited intervals of suitable core, where varying contrast is desired.
منابع مشابه
Geochemical variations detected with continuous XRF measurements on ANDRILL AND-1B core - preliminary results
Antarctica and especially its ice sheets play a major role in both the global ocean current system and climate. The ANDRILL (Antarctic Geological Drilling) MIS deep drilling project (McMurdo Sound, NE Ross Ice Shelf, drilled core AND-1B during austral summer 2006/2007) is located in a flexural moat basin filled with glaciomarine, terrigenous, volcanic, and biogenic sediments (Horgan et al., 200...
متن کاملSynthesis and Characterization of Carboxymethyl Cellulose/Polystyrene Core-Shell Nanoparticles by Miniemulsion Polymerization
The first stage to have access to a reservoir is the drilling operation. The proper development of this operation plays a major role in increasing productivity. It must be pointed out that the drilling fluid (mud) is pivotal in achieving this objective. Among these fluids, water-based fluids are the most common ones, which have been utilized to drill approximately 80% of all wells and are m...
متن کاملResidual stress preserved in quartz from the San Andreas Fault Observatory at Depth
We report on measurements of residual stress up to 300 MPa with a microfocused synchrotron X-ray beam in quartz fragments in a cataclasite from the damage zone of the San Andreas fault, California (USA). Samples were extracted from the San Andreas Fault Observatory at Depth drill core at a depth of 2.7 km. Stresses were derived from lattice distortions observed on Laue diffraction images. These...
متن کاملImprovement of Thermal Conductivity Properties of Drilling Fluid by CuO Nanofluid
In a recent decade, application of nanofluid as a candidate for heat transfer medium has gaining an increasing attention due to its unique advantages. In the light of its unique advantages, it has been utilized in different industries such as oil and gas industries. In this work aims at improving thermal conductivity of the water-based drilling fluid by using the CuO nanofluid additive. CuO nan...
متن کاملNi@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...
متن کامل