Machine Translation Evaluation using Recurrent Neural Networks
نویسندگان
چکیده
This paper presents our metric (UoWLSTM) submitted in the WMT-15 metrics task. Many state-of-the-art Machine Translation (MT) evaluation metrics are complex, involve extensive external resources (e.g. for paraphrasing) and require tuning to achieve the best results. We use a metric based on dense vector spaces and Long Short Term Memory (LSTM) networks, which are types of Recurrent Neural Networks (RNNs). For WMT15 our new metric is the best performing metric overall according to Spearman and Pearson (Pre-TrueSkill) and second best according to Pearson (TrueSkill) system level correlation.
منابع مشابه
ReVal: A Simple and Effective Machine Translation Evaluation Metric Based on Recurrent Neural Networks
Many state-of-the-art Machine Translation (MT) evaluation metrics are complex, involve extensive external resources (e.g. for paraphrasing) and require tuning to achieve best results. We present a simple alternative approach based on dense vector spaces and recurrent neural networks (RNNs), in particular Long Short Term Memory (LSTM) networks. ForWMT-14, our new metric scores best for two out o...
متن کاملDoes Multimodality Help Human and Machine for Translation and Image Captioning?
This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate the usefulness of multimodal data for human machine translation...
متن کاملTranslation Modeling with Bidirectional Recurrent Neural Networks
This work presents two different translation models using recurrent neural networks. The first one is a word-based approach using word alignments. Second, we present phrase-based translation models that are more consistent with phrasebased decoding. Moreover, we introduce bidirectional recurrent neural models to the problem of machine translation, allowing us to use the full source sentence in ...
متن کاملA Recurrent Neural Networks Approach for Estimating the Quality of Machine Translation Output
This paper presents a novel approach using recurrent neural networks for estimating the quality of machine translation output. A sequence of vectors made by the prediction method is used as the input of the final recurrent neural network. The prediction method uses bi-directional recurrent neural network architecture both on source and target sentence to fully utilize the bi-directional quality...
متن کاملExperiments on Different Recurrent Neural Networks for English-hindi Machine Translation
Recurrent Neural Networks are a type of Artificial Neural Networks which are adept at dealing with problems which have a temporal aspect to them. These networks exhibit dynamic properties due to their recurrent connections. Most of the advances in deep learning employ some form of Recurrent Neural Networks for their model architecture. RNN's have proven to be an effective technique in applicati...
متن کامل