Predicting EMG Data from M1 Neurons with Variational Bayesian Least Squares

نویسندگان

  • Jo-Anne Ting
  • Aaron D'Souza
  • Kenji Yamamoto
  • Toshinori Yoshioka
  • Donna L. Hoffman
  • Lauren Sergio
  • Shinji Kakei
  • John Kalaska
  • Mitsuo Kawato
  • Peter Strick
  • Stefan Schaal
چکیده

An increasing number of projects in neuroscience requires the statistical analysis of high dimensional data sets, as, for instance, in predicting behavior from neural firing or in operating artificial devices from brain recordings in brain-machine interfaces. Linear analysis techniques remain prevalent in such cases, but classical linear regression approaches are often numerically too fragile in high dimensions. In this paper, we address the question of whether EMG data collected from arm movements of monkeys can be faithfully reconstructed with linear approaches from neural activity in primary motor cortex (M1). To achieve robust data analysis, we develop a full Bayesian approach to linear regression that automatically detects and excludes irrelevant features in the data, regularizing against overfitting. In comparison with ordinary least squares, stepwise regression, partial least squares, LASSO regression and a brute force combinatorial search for the most predictive input features in the data, we demonstrate that the new Bayesian method offers a superior mixture of characteristics in terms of regularization against overfitting, computational efficiency and ease of use, demonstrating its potential as a drop-in replacement for other linear regression techniques. As neuroscientific results, our analyses demonstrate that EMG data can be well predicted from M1 neurons, further opening the path for possible real-time interfaces between brains and machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse linear regression for reconstructing muscle activity from human cortical fMRI

In humans, it is generally not possible to use invasive techniques in order to identify brain activity corresponding to activity of individual muscles. Further, it is believed that the spatial resolution of non-invasive brain imaging modalities is not sufficient to isolate neural activity related to individual muscles. However, this study shows that it is possible to reconstruct muscle activity...

متن کامل

Variational Bayesian least squares: An application to brain-machine interface data

An increasing number of projects in neuroscience require statistical analysis of high-dimensional data, as, for instance, in the prediction of behavior from neural firing or in the operation of artificial devices from brain recordings in brain-machine interfaces. Although prevalent, classical linear analysis techniques are often numerically fragile in high dimensions due to irrelevant, redundan...

متن کامل

Local Kernels that Approximate Bayesian Regularization and Proximal Operators

In this work, we broadly connect kernel-based filtering (e.g. approaches such as the bilateral filters and nonlocal means, but also many more) with general variational formulations of Bayesian regularized least squares, and the related concept of proximal operators. The latter set of variational/Bayesian/proximal formulations often result in optimization problems that do not have closed-form so...

متن کامل

Partial reconstruction of muscle activity from a pruned network of diverse motor cortex neurons.

Primary motor cortex (M1) neurons traditionally have been viewed as "upper motor neurons" that directly drive spinal motoneuron pools, particularly during finger movements. We used spike-triggered averages (SpikeTAs) of electromyographic (EMG) activity to select M1 neurons whose spikes signaled the arrival of input in motoneuron pools, and examined the degree of similarity between the activity ...

متن کامل

Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.

It is well known that discharge of neurons in the primary motor cortex (M1) depends on end-point force and limb posture. However, the details of these relations remain unresolved. With the development of brain-machine interfaces (BMIs), these issues have taken on practical as well as theoretical importance. We examined how the M1 encodes movement by comparing single-neuron and electromyographic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005