Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons.

نویسندگان

  • Thomas Flores
  • Xin Lei
  • Tiffany Huang
  • Henri Lorach
  • Roopa Dalal
  • Ludwig Galambos
  • Theodore Kamins
  • Keith Mathieson
  • Daniel Palanker
چکیده

OBJECTIVE High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. APPROACH To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. MAIN RESULTS Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. SIGNIFICANCE 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of shape and coating of a subretinal prosthesis on its integration with the retina.

Retinal stimulation with high spatial resolution requires close proximity of electrodes to target cells. This study examines the effects of material coatings and 3-dimensional geometries of subretinal prostheses on their integration with the retina. A trans-scleral implantation technique was developed to place microfabricated structures in the subretinal space of RCS rats. The effect of three c...

متن کامل

Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis.

PURPOSE One of the critical difficulties in design of a high-resolution retinal implant is the proximity of stimulating electrodes to the target cells. This is a report of a phenomenon of retinal cellular migration into a perforated membrane that may help to address this problem. METHODS Mylar membranes with an array of perforations (3-40 microm in diameter) were used as a substrate for in vi...

متن کامل

Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes.

OBJECTIVE Intra-retinal placement of stimulating electrodes can provide close and stable proximity to target neurons. We assessed improvement in stimulation thresholds and selectivity of the direct and network-mediated retinal stimulation with intraretinal electrodes, compared to epiretinal and subretinal placements. APPROACH Stimulation thresholds of the retinal ganglion cells (RGCs) in wild...

متن کامل

Neural prosthesis in the wake of nanotechnology: controlled growth of neurons using surface nanostructures.

Neural prosthesis has been successfully applied to patients with motional or sensory disabilities for clinical purpose. To enhance the performance of the neural prosthetic device, the electrodes for the biosignal recording or electrical stimulation should be located in closer proximity to target neurons than they are now. Instead of revising the prior implanting surgery to improve the electrica...

متن کامل

Photovoltaic retinal prosthesis: implant fabrication and performance.

The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neural engineering

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2018