The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers.

نویسندگان

  • Kouki K Touhara
  • Weiwei Wang
  • Roderick MacKinnon
چکیده

G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na(+). In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na(+) binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na(+) regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na(+) binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na(+), but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na(+) permanently bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The GIRK 1 subunit potentiates G protein activation of cardiac GIRK 1 / 4 hetero - tetramers 6

11 G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G 12 protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na +. In cardiac 13 pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play 14 a central role in parasympathetic slowing of heart rate. It is known that the Na + binding site of 15 the GIRK1 subun...

متن کامل

G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.

G protein-gated inwardly rectifying potassium channels (GIRKs) are a family of homo- and hetero-oligomeric K(+) channels composed of different subunits (GIRK1 to 4 in mammals). GIRK4 and GIRK1 are found mainly in the atrium, whereas neuronal cells predominantly express the GIRK1, GIRK2, and GIRK3 isoforms. When activated, GIRK channels slow the firing rate of atrial myocytes and neuronal cells....

متن کامل

The inwardly rectifying K(+) channel subunit GIRK1 rescues the GIRK2 weaver phenotype.

The weaver (wv) gene has been identified as a glycine to serine substitution at residue 156 in the H5 region of inwardly rectifying K(+) channel, GIRK2. The mutation is permissive for the expression of homotetrameric channels that are nonselective for cations and G-protein-independent. Coexpression of GIRK2wv with GIRK1, GIRK2, or GIRK3 in Xenopus oocytes along with expression of subunit combin...

متن کامل

Molecular basis of the facilitation of the heterooligomeric GIRK1/GIRK4 complex by cAMP dependent protein kinase

G-protein activated inwardly rectifying K(+) channels (GIRKs) of the heterotetrameric GIRK1/GIRK4 composition mediate I(K+ACh) in atrium and are regulated by cAMP dependent protein kinase (PKA). Phosphorylation of GIRK1/GIRK4 complexes promotes the activation of the channel by the G-protein Gβγ-dimer ("heterologous facilitation"). Previously we reported that 3 serines/threonines (S/Ts) within t...

متن کامل

A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ

G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • eLife

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016