On quadratic fields with large 3-rank

نویسنده

  • Karim Belabas
چکیده

Davenport and Heilbronn defined a bijection between classes of binary cubic forms and classes of cubic fields, which has been used to tabulate the latter. We give a simpler proof of their theorem then analyze and improve the table-building algorithm. It computes the multiplicities of the O(X) general cubic discriminants (real or imaginary) up to X in time O(X) and space O(X3/4), or more generally in time O(X+X7/4/M) and space O(M +X1/2) for a freely chosen positive M . A variant computes the 3-ranks of all quadratic fields of discriminant up to X with the same time complexity, but using only M + O(1) units of storage. As an application we obtain the first 1618 real quadratic fields with r3(∆) ≥ 4, and prove that Q( √ −5393946914743) is the smallest imaginary quadratic field with 3-rank equal to 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing quadratic function fields with high 3-rank via cubic field tabulation

We present recent results on the computation of quadratic function fields with high 3-rank. Using a generalization of a method of Belabas on cubic field tabulation and a theorem of Hasse, we compute quadratic function fields with 3-rank ≥ 1, of imaginary or unusual discriminant D, for a fixed |D| = q. We present numerical data for quadratic function fields over F5, F7, F11 and F13 with deg(D) ≤...

متن کامل

Construction of hyperelliptic function fields of high three-rank

We present several explicit constructions of hyperelliptic function fields whose Jacobian or ideal class group has large 3-rank. Our focus is on finding examples for which the genus and the base field are as small as possible. Most of our methods are adapted from analogous techniques used for generating quadratic number fields whose ideal class groups have high 3-rank, but one method, applicabl...

متن کامل

Descent by 3-isogeny and 3-rank of quadratic fields

In this paper families of elliptic curves admitting a rational isogeny of degree 3 are studied. It is known that the 3-torsion in the class group of the field defined by the points in the kernel of such an isogeny is related to the rank of the elliptic curve. Families in which almost all the curves have rank at least 3 are constructed. In some cases this provides lower bounds for the number of ...

متن کامل

On the Mean 3-rank of Quadratic Fields

The Cohen-Lenstra-Martinet heuristics give precise predictions about the class groups of a “random” number field. The 3-rank of quadratic fields is one of the few instances where these have been proven. In the present paper, we prove that, in this case, the rate of convergence is at least subexponential. In addition, we show that the defect appearing in Scholz’s mirror theorem is equidistribute...

متن کامل

Courbes modulaires et 11-rang de corps quadratiques

TABLE DES MATI`ERES Introduction 1. Structure galoisienne de courbes modulaires 2. Le cas p = 23 3. Méthode et Résultats Remerciements Bibliographie Nous construisons 53 corps quadratiques imaginaires ayant un 11-rangégaì a 3, et sept corps quadratiques réels de 11-rangégaì a 2. Ce sont, ` a notre connaissance, les premiers exemples de tels corps. We construct 53 imaginary quadratic fields of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2004