Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing.
نویسندگان
چکیده
We report highly reproducible gravimetric and optical measurements of microdroplets that lend insights into the fundamentals of drop-on-demand (DOD) printing. Baseline fluidic pressure within the DOD dispenser was controlled to within 0.02 hPa, enabling long-term stability in dispensed droplet mass with observed variations near 1% (RSD) for isobutanol. The gravimetric measurements were sensitive enough to detect and avoid unwanted effects from air bubbles within the dispenser. The gravimetric and optical velocity measurements enabled consistent determination of droplet kinetic energy that governed baseline behavior across the operational variables. Mass and velocity were influenced in a nonlinear manner by the frequency of droplet ejection, the fluidic pressure within the dispensing device, and the number of droplets dispensed in a burst. Resolved effects were attributable to several possible mechanisms including acoustic resonances, energy partitioning from systematic orifice refill dynamics, pressure wavelets created within the dispenser cavity during "first-drop" formation, and residual ring-down after last-drop emergence.
منابع مشابه
Inkjet Metrology: High-Accuracy Mass Measurements of Microdroplets Produced by a Drop-on-Demand Dispenser
We describe gravimetric methods for measuring the mass of droplets generated by a drop-on-demand (DOD) microdispenser. Droplets are deposited, either continuously at a known frequency or as a burst of known number, into a cylinder positioned on a submicrogram balance. Mass measurements are acquired precisely by computer, and results are corrected for evaporation. Capabilities are demonstrated u...
متن کاملExperimental Studies of Meniscus Dynamic Behaviors in a Squeeze-Mode Piezoelectric Inkjet Printhead
Meniscus dynamic behaviors, as well as its optimal waveform of driving signal, in a squeeze mode piezoelectric inkjet device are studied in this paper. To use the squeeze mode piezoelectric inkjet device as a drop-on-demand dispenser, the driving signal is trapezium waveform. The parameters in a trapezium waveform of the driving signal include rise time (trise), dwelling time (tdwell), fall tim...
متن کاملEffects of Pulse Voltage on the Droplet Formation of Alcohol and Ethylene Glycol in a Piezoelectric Inkjet Printing Process with Bipolar Pulse
The dynamics of droplet formation of liquid in a piezoelectric inkjet printing process with bipolar pulse and drop-on-demand (DOD) mode is investigated in this study. Two liquids with different viscosities and surface tension coefficients; alcohol and ethylene glycol, are studied. The effects of pulse voltage on the droplet formation are also examined. A piezoelectric actuated inkjet printhead ...
متن کاملParticle Fabrication Using Inkjet Printing onto Hydrophobic Surfaces for Optimization and Calibration of Trace Contraband Detection Sensors
A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic...
متن کاملManipulating Drop Formation in Piezo Acoustic Inkjet
Inkjet developments move towards higher productivity and quality, requiring adjustable small droplet sizes fired at high repetition rates. Normally, maximum jetting efficiency is achieved by tuning the slopes of the driving waveform to the travel times of acoustic waves inside the channel. Important parameters are channel length, compliance of channel cross-section (through its impact on the ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 15 شماره
صفحات -
تاریخ انتشار 2011