Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity.
نویسندگان
چکیده
An experimental ovine fetal model for perinatal pulmonary hypertension of the neonate (PPHN) was characterized by altered pulmonary vasoreactivity and structure. Because past studies had suggested impaired nitric oxide-cGMP cascade in this experimental model, we hypothesized that elevated phosphodiesterase (PDE) activity may contribute to altered vascular reactivity and structure in experimental PPHN. Therefore, we studied the effects of the PDE inhibitors zaprinast and dipyridamole on fetal pulmonary vascular resistance and PDE5 activity, protein, mRNA, and localization in normal and pulmonary hypertensive fetal lambs. Infusion of dipyridamole and zaprinast lowered pulmonary vascular resistance by 55 and 35%, respectively, in hypertensive animals. In comparison with control animals, lung cGMP PDE activity was elevated in hypertensive fetal lambs (150%). Increased PDE5 activity was not associated with either an increased PDE5 protein or mRNA level. Immunocytochemistry demonstrated that PDE5 was localized to vascular smooth muscle. We concluded that PDE5 activity was increased in experimental PPHN, possibly by posttranslational phosphorylation. We speculated that these increases in cGMP PDE activity contributed to altered pulmonary vasoreactivity in experimental perinatal pulmonary hypertension.
منابع مشابه
Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
In the pulmonary vasculature, cGMP concentrations are regulated in part by a cGMP-dependent phosphodiesterase (PDE), PDE5. Infants with persistent pulmonary hypertension of the newborn (PPHN) are often mechanically ventilated with high oxygen concentrations. The effects of hyperoxia on the developing pulmonary vasculature and PDE5 are largely unknown. Here, we demonstrate that exposure of fetal...
متن کاملSOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension.
Phosphodiesterase 5 (PDE5) and soluble guanylate cyclase (sGC) are key regulators of cGMP and pulmonary vascular tone. We sought to determine the impact of mechanical ventilation with O(2) with or without inhaled nitric oxide (iNO) or recombinant human Cu/Zn SOD (rhSOD) on sGC, PDE5, and cGMP in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). PPHN lam...
متن کاملEndothelial alterations during inhaled NO in lambs with pulmonary hypertension: implications for rebound hypertension.
Clinically significant increases in pulmonary vascular resistance (PVR) have been noted upon acute withdrawal of inhaled nitric oxide (iNO). Previous studies in the normal pulmonary circulation demonstrate that iNO increases endothelin-1 (ET-1) levels and decreases endogenous nitric oxide synthase (NOS) activity, implicating an endothelial etiology for the increase in resistance upon iNO withdr...
متن کاملHydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn.
In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hy...
متن کاملRole of Rho kinases in PKG-mediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia.
An increase in Rho kinase (ROCK) activity is implicated in chronic hypoxia-induced pulmonary hypertension. In the present study, we determined the role of ROCKs in cGMP-dependent protein kinase (PKG)-mediated pulmonary vasodilation of fetal lambs exposed to chronic hypoxia. Fourth generation pulmonary arteries were isolated from near-term fetuses ( approximately 140 days of gestation) delivered...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 275 5 شماره
صفحات -
تاریخ انتشار 1998